在输出和目标标签之间使用 nn.Cross entropy

Sho*_*del 2 python neural-network torch cross-entropy bert-language-model

我用这个代码

训练模型的函数

def train():
  
  model.train()

  total_loss, total_accuracy = 0, 0
  
  # empty list to save model predictions
  total_preds=[]
  
  # iterate over batches
  for step,batch in enumerate(train_dataloader):
    
    # progress update after every 50 batches.
    if step % 50 == 0 and not step == 0:
      print('  Batch {:>5,}  of  {:>5,}.'.format(step, len(train_dataloader)))

    # push the batch to gpu
    #batch = [r for r in batch]
 
    sent_id, mask, labels = batch['input_ids'],batch['attention_mask'],batch['labels']
    print(6)
    print(sent_id)
    print(mask)
    print(labels)
    print(batch['input_ids'].shape)
    print(batch['attention_mask'].shape)
    print(batch['labels'].shape)

    # clear previously calculated gradients 
    model.zero_grad() 
    print(7)       

    # get model predictions for the current batch
    preds = model(sent_id, mask)
    print(8)
    print(len(preds))
    print(len(labels))
    print(preds.size())
    
   
    preds =torch.argmax(preds, dim=1)
    preds =torch.argmax(preds, dim=1)
    print(preds)
    print(labels)

    # compute the loss between actual and predicted values
    loss = loss_fn(preds, labels)
    print(9)

    # add on to the total loss
    total_loss = total_loss + loss.item()
    print(10)

    # backward pass to calculate the gradients
    loss.backward()

    # clip the the gradients to 1.0. It helps in preventing the exploding gradient problem
  # clip the the gradients to 1.0. It helps in preventing the exploding gradient problem
    torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)

    # update parameters
    optimizer.step()

    # model predictions are stored on GPU. So, push it to CPU
    preds=preds.numpy()

    # append the model predictions
    total_preds.append(preds)

  # compute the training loss of the epoch
  avg_loss = total_loss / len(train_dataloader)
  
  # predictions are in the form of (no. of batches, size of batch, no. of classes).
  # reshape the predictions in form of (number of samples, no. of classes)
  total_preds  = np.concatenate(total_preds, axis=0)

  #returns the loss and predictions
  return avg_loss, total_preds
Run Code Online (Sandbox Code Playgroud)
import torch.nn as nn

loss_fn=nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.00001)
Run Code Online (Sandbox Code Playgroud)

我在计算损失 preds 张量时出错([5, 1, 1, 1, 0, 2, 1, 4, 2, 3, 0, 2, 0, 1, 0, 3, 5, 3, 1, 2 , 0, 2, 2, 1, 0, 1, 4, 0, 5, 5, 4, 5, 0, 2, 0, 1, 4, 0, 0, 3, 5, 1, 1, 1, 4 , 4, 4, 1, 2, 1, 3, 3, 2, 1, 0, 2, 0, 4, 4, 4, 3, 2, 0, 5])

标签张量([0, 0, 1, 2, 3, 0, 0, 0, 0, 1, 1, 0, 0, 0, 4, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 1, 3, 2, 0, 3, 4, 0, 1, 0, 0, 0, 0, 0, 0, 5, 0, 0, 3, 0, 0, 1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0]) 我在 loss=loss_fn(preds,labels) 错误中使用了它们:

in cross_entropy(input, target, weight, size_average, ignore_index, reduce, reduction, label_smoothing)
   2844     if size_average is not None or reduce is not None:
   2845         reduction = _Reduction.legacy_get_string(size_average, reduce)
-> 2846     return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)
   2847 
   2848 

RuntimeError: Expected floating point type for target with class probabilities, got Long
Run Code Online (Sandbox Code Playgroud)

小智 5

\n

运行时错误:具有类\n概率的目标的预期浮点类型,得到长

\n
\n

错误非常清楚。您需要将目标张量的数据类型转换为浮点数。这与您使用的损失函数有关。既然你选择了 CE 损失,你最终会得到概率。而这些概率自然都是浮点数。这意味着您的目标也应该是浮动的。例如,您可能有一个目标张量 a= [1, 0, 0, 1] 您需要将其转换为 [1.0 , 0.0 , 0.0 , 1.0]

\n

您可以使用下表来检查所有类型。

\n
\xe2\x95\x94\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\xa6\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\xa6\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\xa6\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x97\n\xe2\x95\x91        Data type         \xe2\x95\x91             dtype             \xe2\x95\x91     CPU tensor     \xe2\x95\x91       GPU tensor        \xe2\x95\x91\n\xe2\x95\xa0\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\xac\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\xac\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\xac\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\xa3\n\xe2\x95\x91 32-bit floating point    \xe2\x95\x91 torch.float32 or torch.float  \xe2\x95\x91 torch.FloatTensor  \xe2\x95\x91 torch.cuda.FloatTensor  \xe2\x95\x91\n\xe2\x95\x91 64-bit floating point    \xe2\x95\x91 torch.float64 or torch.double \xe2\x95\x91 torch.DoubleTensor \xe2\x95\x91 torch.cuda.DoubleTensor \xe2\x95\x91\n\xe2\x95\x91 16-bit floating point    \xe2\x95\x91 torch.float16 or torch.half   \xe2\x95\x91 torch.HalfTensor   \xe2\x95\x91 torch.cuda.HalfTensor   \xe2\x95\x91\n\xe2\x95\x91 8-bit integer (unsigned) \xe2\x95\x91 torch.uint8                   \xe2\x95\x91 torch.ByteTensor   \xe2\x95\x91 torch.cuda.ByteTensor   \xe2\x95\x91\n\xe2\x95\x91 8-bit integer (signed)   \xe2\x95\x91 torch.int8                    \xe2\x95\x91 torch.CharTensor   \xe2\x95\x91 torch.cuda.CharTensor   \xe2\x95\x91\n\xe2\x95\x91 16-bit integer (signed)  \xe2\x95\x91 torch.int16 or torch.short    \xe2\x95\x91 torch.ShortTensor  \xe2\x95\x91 torch.cuda.ShortTensor  \xe2\x95\x91\n\xe2\x95\x91 32-bit integer (signed)  \xe2\x95\x91 torch.int32 or torch.int      \xe2\x95\x91 torch.IntTensor    \xe2\x95\x91 torch.cuda.IntTensor    \xe2\x95\x91\n\xe2\x95\x91 64-bit integer (signed)  \xe2\x95\x91 torch.int64 or torch.long     \xe2\x95\x91 torch.LongTensor   \xe2\x95\x91 torch.cuda.LongTensor   \xe2\x95\x91\n\xe2\x95\x91 Boolean                  \xe2\x95\x91 torch.bool                    \xe2\x95\x91 torch.BoolTensor   \xe2\x95\x91 torch.cuda.BoolTensor   \xe2\x95\x91\n\xe2\x95\x9a\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\xa9\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\xa9\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\xa9\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x90\xe2\x95\x9d\n
Run Code Online (Sandbox Code Playgroud)\n

为了将张量转换为另一种 dtype,您可以使用类似的东西

\n
sample_tensor=sample_tensor.type(torch.FloatTensor) \n
Run Code Online (Sandbox Code Playgroud)\n

或者

\n
sample_tensor=sample_tensor.to(torch.float )\n
Run Code Online (Sandbox Code Playgroud)\n

(我不确定是否需要重新分配张量)

\n