合并两个文件并在python中添加计算并对更新后的数据进行排序

rbu*_*rnz 12 python sorting

我需要帮助来制作下面的代码片段。我需要合并两个文件并在匹配的行上执行计算

我有oldFile.txt其中包含旧数据和newFile.txt包含更新的数据集。

我需要根据newFile.txt中的数据更新oldFile.txt并计算百分比变化。任何想法都会非常有帮助。提前致谢

from collections import defaultdict
num = 0
data=defaultdict(int)
with open("newFile.txt", encoding='utf8', errors='ignore') as f:
    for line in f:
        grp, pname, cnt, cat = line.split(maxsplit=3)
        data[(pname.strip(),cat.replace('\n','').strip(),grp,cat)]+=int(cnt)
        
sorteddata = sorted([[k[0],v,k[1],k[2]] for k,v in data.items()], key=lambda x:x[1], reverse=True)

for subl in sorteddata[:10]:
    num += 1
    line = " ".join(map(str, subl))
    print ("{:>5} -> {:>}".format(str(num), line))

    with open("oldFile.txt", 'a', encoding='utf8', errors='ignore') as l:
        l.write(" ".join(map(str, subl)) + '\n')
Run Code Online (Sandbox Code Playgroud)

旧文件.txt

 #col1             #col2        #col3  #col4
 1,396 c15e89f2149bcc0cbd5fb204   4    HUH_Token (HUH)                      
   279 9e4d81c8fc15870b15aef8dc   3    BABY BNB (BBNB)                
   231 31b5c07636dab8f0909dbd2d   6    Buff Unicorn (BUFFUN...)             
   438 1c6bc8e962427deb4106ae06   8    Charge (Charge)                      
 2,739 6ea059a29eccecee4e250414   2    MAXIMACASH (MAXCAS...)
Run Code Online (Sandbox Code Playgroud)

newFile.txt #-- 使用 oldFile.txt 中未找到的附加行更新了数据

 #col1             #col2        #col3  #col4
 8,739 6ea059a29eccecee4e250414   60   MAXIMACASH (MAXCAS...)
   138 1c6bc8e962427deb4106ae06   50   Charge (Charge)                      
   860 31b5c07636dab8f0909dbd2d   40   Buff Unicorn (BUFFUN...)             
   200 9e4d81c8fc15870b15aef8dc   30   BABY BNB (BBNB)    #-- not found in the oldFile.txt
    20 5esdsds2sd15870b15aef8dc   30   CharliesAngel (CA)            
 1,560 c15e89f2149bcc0cbd5fb204   20   HUH_Token (HUH)     
Run Code Online (Sandbox Code Playgroud)

需要改进:#-- 使用附加列(col5、col6)并根据(col3)值排序

 #col1             #col2        #col3      #col4                #col5 (oldFile-newFile)   #col6 (oldFile-newFile)
 8,739 6ea059a29eccecee4e250414  62   MAXIMACASH (MAXCAS...)   2900.00 % (col3 2-60)    219.06 % (col1 2,739-8,739) 
   138 1c6bc8e962427deb4106ae06  58   Charge (Charge)           625.00 % (col3 8-50)    -68.49 % (col1   438-138)      
   860 31b5c07636dab8f0909dbd2d  46   Buff Unicorn (BUFFUN...)  566.67 % (col3 6-40)    272.29 % (col1   231-860)
   200 9e4d81c8fc15870b15aef8dc  33   BABY BNB (BBNB)           900.00 % (col3 3-30)    -28.32 % (col1   279-200) 
    20 5esdsds2sd15870b15aef8dc  30   CharliesAngel (CA)          0.00 % (col3 0-30)     20.00 % (col1   0-20) 
 1,560 c15e89f2149bcc0cbd5fb204  24   HUH_Token (HUH)           400.00 % (col3 4-20)     11.75 % (col1 1,396-1,560)
Run Code Online (Sandbox Code Playgroud)

fer*_*rdy 9

这是输出您需要的内容的示例代码。我使用下面的公式来计算 pct 变化。 percentage_change = 100*(new-old)/old

如果 old 为 0,则将其更改为 1,以避免除以零错误。

import pandas as pd


def read_file(fn):
    """
    Read file fn and convert data into a dict of dict.
    data = {pname1: {grp: grp1, pname: pname1, cnt: cnt1, cat: cat1},
            pname2: {gpr: grp2, ...} ...}
    """
    data = {}
    with open(fn, 'r') as f:
        for lines in f:
            line = lines.rstrip()
            grp, pname, cnt, cat = line.split(maxsplit=3)
            data.update({pname: {'grp': float(grp.replace(',', '')), 'pname': pname, 'cnt': int(cnt), 'cat': cat}})
            
    return data


def process_data(oldfn, newfn):  
    """
    Read old and new files, update the old file based on new file.
    Save output to text, and csv files.
    """
    # Get old and new data in dict.
    old = read_file(oldfn)
    new = read_file(newfn)

    # Update old data based on new data
    u_data = {}
    for ko, vo in old.items():
        if ko in new:
            n = new[ko]
            
            # Update cnt.
            old_cnt = vo['cnt']
            new_cnt = n['cnt']
            u_cnt = old_cnt + new_cnt

            # cnt change, if old is zero we set it to 1 to avoid division by zero error.
            tmp_old_cnt = 1 if old_cnt == 0 else old_cnt
            cnt_change = 100 * (new_cnt - tmp_old_cnt) / tmp_old_cnt

            # grp change
            old_grp = vo['grp']
            new_grp = n['grp']
            grp_change = 100 * (new_grp - old_grp) / old_grp

            u_data.update({ko: {'grp': n['grp'], 'pname': n['pname'], 'cnt': u_cnt, 'cat': n['cat'],
                                'cnt_change%': round(cnt_change, 2), 'grp_change%': round(grp_change, 2)}})

    # add new data to u_data, that is not in old data
    for kn, vn in new.items():
        if kn not in old:        
            # Since this is new item its old cnt is zero, we set it to 1 to avoid division by zero error.
            old_cnt = 1
            new_cnt = vn['cnt']
            cnt_change = 100 * (new_cnt - old_cnt) / old_cnt        

            # grp change is similar to cnt change
            old_grp = 1
            new_grp = vn['grp']
            grp_change = 100 * (new_grp - old_grp) / old_grp
            
            # Update new columns.
            vn.update({'cnt_change%': round(cnt_change, 2), 'grp_change%': round(grp_change, 2)})        
            u_data.update({kn: vn})
            
    # Create new data mydata list from u_data, and only extract the dict value.
    mydata = []
    for _, v in u_data.items():
        mydata.append(v)
        
    # Convert mydata into pandas dataframe to easier manage the data.
    df = pd.DataFrame(mydata)
    df = df.sort_values(by=['cnt'], ascending=False)  # sort on cnt column
    
    # Save to csv file.
    df.to_csv('output.csv', index=False)
    
    # Save to text file.
    with open('output.txt', 'w') as w:
        w.write(f'{df.to_string(index=False)}')
        
    # Print in console.    
    print(df.to_string(index=False))


# Start
oldfn = 'F:/Tmp/oldFile.txt'
newfn = 'F:/Tmp/newFile.txt'
process_data(oldfn, newfn)
Run Code Online (Sandbox Code Playgroud)

控制台输出:

   grp                    pname  cnt                      cat  cnt_change%  grp_change%
8739.0 6ea059a29eccecee4e250414   62   MAXIMACASH (MAXCAS...)      2900.00       219.06
 138.0 1c6bc8e962427deb4106ae06   58          Charge (Charge)       525.00       -68.49
 860.0 31b5c07636dab8f0909dbd2d   46 Buff Unicorn (BUFFUN...)       566.67       272.29
 200.0 9e4d81c8fc15870b15aef8dc   33          BABY BNB (BBNB)       900.00       -28.32
  20.0 5esdsds2sd15870b15aef8dc   30       CharliesAngel (CA)      2900.00      1900.00
1560.0 c15e89f2149bcc0cbd5fb204   24          HUH_Token (HUH)       400.00        11.75
Run Code Online (Sandbox Code Playgroud)

文本输出:

   grp                    pname  cnt                      cat  cnt_change%  grp_change%
8739.0 6ea059a29eccecee4e250414   62   MAXIMACASH (MAXCAS...)      2900.00       219.06
 138.0 1c6bc8e962427deb4106ae06   58          Charge (Charge)       525.00       -68.49
 860.0 31b5c07636dab8f0909dbd2d   46 Buff Unicorn (BUFFUN...)       566.67       272.29
 200.0 9e4d81c8fc15870b15aef8dc   33          BABY BNB (BBNB)       900.00       -28.32
  20.0 5esdsds2sd15870b15aef8dc   30       CharliesAngel (CA)      2900.00      1900.00
1560.0 c15e89f2149bcc0cbd5fb204   24          HUH_Token (HUH)       400.00        11.75
Run Code Online (Sandbox Code Playgroud)

.csv 输出:

grp,pname,cnt,cat,cnt_change%,grp_change%
8739.0,6ea059a29eccecee4e250414,62,MAXIMACASH (MAXCAS...),2900.0,219.06
138.0,1c6bc8e962427deb4106ae06,58,Charge (Charge),525.0,-68.49
860.0,31b5c07636dab8f0909dbd2d,46,Buff Unicorn (BUFFUN...),566.67,272.29
200.0,9e4d81c8fc15870b15aef8dc,33,BABY BNB (BBNB),900.0,-28.32
20.0,5esdsds2sd15870b15aef8dc,30,CharliesAngel (CA),2900.0,1900.0
1560.0,c15e89f2149bcc0cbd5fb204,24,HUH_Token (HUH),400.0,11.75
Run Code Online (Sandbox Code Playgroud)