使用函子参数化的数据类型

ama*_*loy 6 haskell functor higher-kinded-types

我最近定义了一个类型,我可能无法计算其字段:

data Foo = Foo {x, y :: Int, others :: NonEmpty Int}

data Input

computeX, computeY :: Input -> Maybe Int
computeOthers :: Input -> Maybe (NonEmpty Int)
Run Code Online (Sandbox Code Playgroud)

现在,我可能做的一件明显的事情就是使用liftA3

foo :: Input -> Maybe Foo
foo i = liftA3 Foo (computeX i) (computeY i) (computeOthers i)
Run Code Online (Sandbox Code Playgroud)

Foo这很好用,但我认为推广到hold Maybes,然后将一种类型转换为另一种类型可能会很有趣Foo。在一些类似的情况下,我可以给该Foo类型一个类型参数并派生 Traversable。然后在创建之后Foo (Maybe Int),我可以使用 立即反转整个事情sequenceA :: Foo (Maybe Int) -> Maybe (Foo Int)。但这在这里不起作用,因为我的函数没有给我一个NonEmpty (Maybe Int),它给了我一个Maybe (NonEmpty Int)

所以我想我应该尝试通过函子进行参数化:

data Foo f = Foo {x, y :: f Int, others :: f (NonEmpty Int)}
Run Code Online (Sandbox Code Playgroud)

但问题是,如何将 aFoo Maybe变成 a Maybe (Foo Identity)?显然我可以手工编写该函数:它与liftA3上面的内容同构。但是,对于这种高阶类型,是否有一些与 Traversable 类似的东西,以便我可以对这个问题应用更通用的函数,而不是使用定制函数重新解决它?

Nou*_*are 4

此类数据类型称为“高级数据”(HKD)。通常使用泛型或 Haskell 模板来操作它们。

有一些类似的库higgledy为 HKD 提供内置功能。我相信construct这是您正在寻找的功能:

{-# LANGUAGE DeriveGeneric #-}

import Data.Generic.HKD
import GHC.Generics
import Data.Monoid

data Foo = Foo { x, y :: Int, z :: [Int] }
  deriving (Generic, Show)

emptyFoo :: HKD Foo Last
emptyFoo = mempty

sampleFoo :: HKD Foo Last
sampleFoo = deconstruct (Foo 1 2 [3])

emptyFoo' :: Last Foo
emptyFoo' = construct emptyFoo

sampleFoo' :: Last Foo
sampleFoo' = construct sampleFoo

main = do
  print emptyFoo'
  print sampleFoo'
Run Code Online (Sandbox Code Playgroud)

这将打印:

Last {getLast = Nothing}
Last {getLast = Just (Foo {x = 1, y = 2, z = [3])}
Run Code Online (Sandbox Code Playgroud)

编辑:我刚刚发现一个更受欢迎的库是barbies(higgledy 也取决于芭比娃娃)。您正在寻找的函数也作为以下应用程序存在于该库中btraverse

{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE UndecidableInstances #-}

import Data.List.NonEmpty
import Barbies
import GHC.Generics
import Data.Functor.Identity

data Foo f = Foo {x, y :: f Int, others :: f (NonEmpty Int)}
  deriving (Generic, FunctorB, TraversableB, ConstraintsB)

deriving instance AllBF Show f Foo => Show (Foo f)

f :: Applicative f => Foo f -> f (Foo Identity)
f = btraverse (fmap Identity)

main :: IO ()
main = do
  print (f (Foo (Just 1) (Just 2) (Just (3 :| []))))
Run Code Online (Sandbox Code Playgroud)

这打印:

Just (Foo {x = Identity 1, y = Identity 2, others = Identity (3 :| [])})
Run Code Online (Sandbox Code Playgroud)