如何在 google dataproc 上运行 Spark 3.2.0?

fig*_*uts 8 apache-spark pyspark google-cloud-dataproc

目前,google dataproc 没有 Spark 3.2.0 作为图像。最新可用的是 3.1.2。我想使用 Spark 随 3.2.0 发布的 pandas on pyspark 功能。

我正在执行以下步骤来使用 Spark 3.2.0

  1. 在本地创建了一个环境“pyspark”,其中包含 pyspark 3.2.0
  2. 导出环境 yamlconda env export > environment.yaml
  3. 使用此environment.yaml创建了一个dataproc集群。集群已正确创建,并且环境在 master 和所有工作线程上可用
  4. 然后我更改环境变量。export SPARK_HOME=/opt/conda/miniconda3/envs/pyspark/lib/python3.9/site-packages/pyspark(指向 pyspark 3.2.0), export SPARK_CONF_DIR=/usr/lib/spark/conf(使用 dataproc 的配置文件)和,export PYSPARK_PYTHON=/opt/conda/miniconda3/envs/pyspark/bin/python(使环境包可用)

现在,如果我尝试运行 pyspark shell,我会得到:

21/12/07 01:25:16 ERROR org.apache.spark.scheduler.AsyncEventQueue: Listener AppStatusListener threw an exception
java.lang.NumberFormatException: For input string: "null"
        at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)
        at java.lang.Integer.parseInt(Integer.java:580)
        at java.lang.Integer.parseInt(Integer.java:615)
        at scala.collection.immutable.StringLike.toInt(StringLike.scala:304)
        at scala.collection.immutable.StringLike.toInt$(StringLike.scala:304)
        at scala.collection.immutable.StringOps.toInt(StringOps.scala:33)
        at org.apache.spark.util.Utils$.parseHostPort(Utils.scala:1126)
        at org.apache.spark.status.ProcessSummaryWrapper.<init>(storeTypes.scala:527)
        at org.apache.spark.status.LiveMiscellaneousProcess.doUpdate(LiveEntity.scala:924)
        at org.apache.spark.status.LiveEntity.write(LiveEntity.scala:50)
        at org.apache.spark.status.AppStatusListener.update(AppStatusListener.scala:1213)
        at org.apache.spark.status.AppStatusListener.onMiscellaneousProcessAdded(AppStatusListener.scala:1427)
        at org.apache.spark.status.AppStatusListener.onOtherEvent(AppStatusListener.scala:113)
        at org.apache.spark.scheduler.SparkListenerBus.doPostEvent(SparkListenerBus.scala:100)
        at org.apache.spark.scheduler.SparkListenerBus.doPostEvent$(SparkListenerBus.scala:28)
        at org.apache.spark.scheduler.AsyncEventQueue.doPostEvent(AsyncEventQueue.scala:37)
        at org.apache.spark.scheduler.AsyncEventQueue.doPostEvent(AsyncEventQueue.scala:37)
        at org.apache.spark.util.ListenerBus.postToAll(ListenerBus.scala:117)
        at org.apache.spark.util.ListenerBus.postToAll$(ListenerBus.scala:101)
        at org.apache.spark.scheduler.AsyncEventQueue.super$postToAll(AsyncEventQueue.scala:105)
        at org.apache.spark.scheduler.AsyncEventQueue.$anonfun$dispatch$1(AsyncEventQueue.scala:105)
        at scala.runtime.java8.JFunction0$mcJ$sp.apply(JFunction0$mcJ$sp.java:23)
        at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62)
        at org.apache.spark.scheduler.AsyncEventQueue.org$apache$spark$scheduler$AsyncEventQueue$$dispatch(AsyncEventQueue.scala:100)
        at org.apache.spark.scheduler.AsyncEventQueue$$anon$2.$anonfun$run$1(AsyncEventQueue.scala:96)
        at org.apache.spark.util.Utils$.tryOrStopSparkContext(Utils.scala:1404)
        at org.apache.spark.scheduler.AsyncEventQueue$$anon$2.run(AsyncEventQueue.scala:96)
Run Code Online (Sandbox Code Playgroud)

但是,即使在此之后,shell 也会启动。但是,它不执行代码。引发异常:我尝试运行: set(sc.parallelize(range(10),10).map(lambda x: socket.gethostname()).collect()) 但是,我得到:

21/12/07 01:32:15 WARN org.apache.spark.deploy.yarn.YarnAllocator: Container from a bad node: container_1638782400702_0003_01_000001 on host: monsoon-test1-w-2.us-central1-c.c.monsoon-credittech.internal. Exit status: 1. Diagnostics: [2021-12-07 
01:32:13.672]Exception from container-launch.
Container id: container_1638782400702_0003_01_000001
Exit code: 1
[2021-12-07 01:32:13.717]Container exited with a non-zero exit code 1. Error file: prelaunch.err.
Last 4096 bytes of prelaunch.err :
Last 4096 bytes of stderr :
ltChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:919)
        at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:163)
        at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:714)
        at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:650)
        at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:576)
        at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:493)
        at io.netty.util.concurrent.SingleThreadEventExecutor$4.run(SingleThreadEventExecutor.java:989)
        at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)
        at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
        at java.lang.Thread.run(Thread.java:748)
21/12/07 01:31:43 ERROR org.apache.spark.executor.YarnCoarseGrainedExecutorBackend: Executor self-exiting due to : Driver monsoon-test1-m.us-central1-c.c.monsoon-credittech.internal:44367 disassociated! Shutting down.
21/12/07 01:32:13 WARN org.apache.hadoop.util.ShutdownHookManager: ShutdownHook '$anon$2' timeout, java.util.concurrent.TimeoutException
java.util.concurrent.TimeoutException
        at java.util.concurrent.FutureTask.get(FutureTask.java:205)
        at org.apache.hadoop.util.ShutdownHookManager.executeShutdown(ShutdownHookManager.java:124)
        at org.apache.hadoop.util.ShutdownHookManager$1.run(ShutdownHookManager.java:95)
21/12/07 01:32:13 ERROR org.apache.spark.util.Utils: Uncaught exception in thread shutdown-hook-0
java.lang.InterruptedException
        at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.reportInterruptAfterWait(AbstractQueuedSynchronizer.java:2014)
        at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.awaitNanos(AbstractQueuedSynchronizer.java:2088)
        at java.util.concurrent.ThreadPoolExecutor.awaitTermination(ThreadPoolExecutor.java:1475)
        at java.util.concurrent.Executors$DelegatedExecutorService.awaitTermination(Executors.java:675)
        at org.apache.spark.rpc.netty.MessageLoop.stop(MessageLoop.scala:60)
        at org.apache.spark.rpc.netty.Dispatcher.$anonfun$stop$1(Dispatcher.scala:197)
        at org.apache.spark.rpc.netty.Dispatcher.$anonfun$stop$1$adapted(Dispatcher.scala:194)
        at scala.collection.Iterator.foreach(Iterator.scala:943)
        at scala.collection.Iterator.foreach$(Iterator.scala:943)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
        at scala.collection.IterableLike.foreach(IterableLike.scala:74)
        at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
        at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
        at org.apache.spark.rpc.netty.Dispatcher.stop(Dispatcher.scala:194)
        at org.apache.spark.rpc.netty.NettyRpcEnv.cleanup(NettyRpcEnv.scala:331)
        at org.apache.spark.rpc.netty.NettyRpcEnv.shutdown(NettyRpcEnv.scala:309)
        at org.apache.spark.SparkEnv.stop(SparkEnv.scala:96)
        at org.apache.spark.executor.Executor.stop(Executor.scala:335)
        at org.apache.spark.executor.Executor.$anonfun$new$2(Executor.scala:76)
        at org.apache.spark.util.SparkShutdownHook.run(ShutdownHookManager.scala:214)
        at org.apache.spark.util.SparkShutdownHookManager.$anonfun$runAll$2(ShutdownHookManager.scala:188)
        at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
        at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1996)
        at org.apache.spark.util.SparkShutdownHookManager.$anonfun$runAll$1(ShutdownHookManager.scala:188)
        at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
        at scala.util.Try$.apply(Try.scala:213)
        at org.apache.spark.util.SparkShutdownHookManager.runAll(ShutdownHookManager.scala:188)
        at org.apache.spark.util.SparkShutdownHookManager$$anon$2.run(ShutdownHookManager.scala:178)
        at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
        at java.util.concurrent.FutureTask.run(FutureTask.java:266)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748)
Run Code Online (Sandbox Code Playgroud)

并且在停止之前,相同的错误会重复多次。

我做错了什么以及如何在 google dataproc 上使用 python 3.2.0?

fig*_*uts 1

可以通过以下方式实现这一目标:

  1. your_sample_env使用包含 pyspark 3.2 作为包的环境 ( ) 创建 dataproc 集群
  2. 修改/usr/lib/spark/conf/spark-env.sh添加
SPARK_HOME="/opt/conda/miniconda3/envs/your_sample_env/lib/python/site-packages/pyspark"
SPARK_CONF="/usr/lib/spark/conf"
Run Code Online (Sandbox Code Playgroud)

在其结束时

  1. /usr/lib/spark/conf/spark-defaults.conf注释掉以下配置进行修改
spark.yarn.jars=local:/usr/lib/spark/jars/*
Run Code Online (Sandbox Code Playgroud)

现在,您的 Spark 作业将使用 pyspark 3.2