g12*_*56k 5 python dataframe geopandas
我有一个large polygon文件,small polygon文件,还是points文件。我在这里所做的是循环遍历大多边形以查找哪些小多边形相交。然后计算大多边形内每个小多边形的面积。然后我循环遍历小多边形以查找每个多边形中的点统计数据。
我发现了number_of_somethin每个小多边形的价值。问题是如何对number_of_somethin大多边形内的所有小多边形值求和并将结果存储在原始large_polygon文件中作为新列,比方说large_polygon['smth_sum']?
我df_res_2.loc[idx, 'smth'] = number_of_somethin在大多边形内的每个小多边形中得到了 number_of_somethin 值。现在我需要将它们相加large_polygon['smth_sum']
注: FID为大多边形的id,ID为小多边形的id
import geopandas as gpd
small_polygon = gpd.read_file(r'R:\...\small.shp')
large_polygon = gpd.read_file(r'R:\...\large.shp')
points = gpd.read_file(r'R:\...\points.shp')
SmallJoin =gpd.sjoin(small_polygon, large_polygon)[['FID', 'ID', 'someValue','geometry']]
for i in large_polygon.index:
df_i = SmallJoin[SmallJoin['FID'] == i]
# i do something here, f.e. calculate small polgyon area
df_res = gpd.overlay(large_polygon, df_i, how='intersection')
df_res['area'] = round((df_res.apply(lambda row: row.geometry.area, axis=1)), 4)
# now i know area for each small polygon within large polygon
df_res_2 = df_res[df_res['FID_1'] == i]
# now point statistics in small polygons
PointsJoin =gpd.sjoin(points, df_res)[['ID','someAttribute', 'someAttribute2','geometry']]
for idx, val in df_res_2['ID'].items():
df_idx = PointsJoin[PointsJoin['ID'] == val]
number_of_somethin = df_idx ['someAttribute'] + 121 + df_idx['someAttribute2']
df_res_2.loc[idx, 'smth'] = number_of_somethin
Run Code Online (Sandbox Code Playgroud)
我有一些想法如何做到这一点,但没有一个是行不通的,所以我认为还有其他方法。
large_polygon.loc[i, 'smth_sum'] = df_res_2['smth']
large_polygon.loc[i, 'smth_sum'] = df_res_2['smth'].sum()
large_polygon['smth_sum'] = large_polygon[large_polygon['FID'] == df_res_2['FID_1'].sum()]
Run Code Online (Sandbox Code Playgroud)
你描述了三个GeoDataFrame
您定义每个大型几何图形需要两个输出(此处为国家/地区)
上述所有内容都可以通过空间连接和pandas 来实现merge()groupby()
为了使这一点更清楚 - 还包括一种可视化所有这些的方法
import geopandas as gpd
import shapely.geometry
import requests
import numpy as np
import plotly.express as px
# get some sample data....
# fmt: off
gdf_utm = gpd.GeoDataFrame.from_features(requests.get("https://opendata.arcgis.com/datasets/b294795270aa4fb3bd25286bf09edc51_0.geojson").json()).set_crs("EPSG:4326")
gdf_countries = gpd.read_file(gpd.datasets.get_path("naturalearth_lowres"))
large_polygon = gdf_countries.loc[lambda d: d["iso_a3"].isin(["BEL", "LUX", "NLD", "DEU", "AUT"])]
# large_polygon.boundary.plot()
small_polygon = gpd.sjoin(gdf_utm, large_polygon).loc[:, gdf_utm.columns].groupby(["FID", "ZONE"]).first().reset_index()
# fmt: on
# some points within geometry of small_polygon
b = small_polygon.total_bounds
POINTS = 10
points = gpd.GeoDataFrame(
geometry=[
shapely.geometry.Point(x, y)
for x, y in zip(
np.random.uniform(*b[[0, 2]], POINTS),
np.random.uniform(*b[[1, 3]], POINTS),
)
],
data={"value": np.arange(POINTS)},
crs="EPSG:4326",
)
# spatial small to large with geometry from large
SmallJoin = gpd.sjoin(small_polygon, large_polygon).merge(
large_polygon["geometry"],
left_on="index_right",
right_index=True,
suffixes=("", "_large"),
)
SmallJoin["area"] = SmallJoin.intersection(gpd.GeoSeries(SmallJoin["geometry_large"])).area
# get sums of area of overlap and sum of values from points
Final = (
SmallJoin.rename(columns={"index_right": "index_large"})
.sjoin(points)
.groupby("index_large")
.agg({"area": "sum", "value": "sum", "geometry_large": "first"})
)
Run Code Online (Sandbox Code Playgroud)
| 索引大 | 区域 | 价值 |
|---|---|---|
| 114 | 24.6382 | 25 |
| 121 | 90.3565 | 45 |
| 128 | 0.603031 | 20 |
| 129 | 7.65999 | 20 |
| 130 | 10.5284 | 20 |
px.choropleth_mapbox(
Final,
geojson=gpd.GeoSeries(Final["geometry_large"]),
locations=Final.index,
color="value",
hover_data=["area"],
).add_traces(
px.scatter_mapbox(
points,
lat=points.geometry.y,
lon=points.geometry.x,
color="value",
)
.update_traces(marker_coloraxis="coloraxis2", marker_size=10)
.data
).update_layout(
mapbox={
"style": "carto-positron",
"center": {"lon": sum(b[[0, 2]]) / 2, "lat": sum(b[[1, 3]]) / 2},
"zoom": 3,
"layers": [{"source": small_polygon.__geo_interface__, "type": "line"}],
},
coloraxis2={
"colorbar": {"x": -0.1, "title": "scatter"},
"colorscale": [[0, "blue"], [1, "blue"]],
},
coloraxis={"colorscale": [[0, "white"], [1, "green"]]},
margin={"l": 0, "r": 0, "t": 0, "b": 0},
)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
267 次 |
| 最近记录: |