Max*_*Max 3 python warnings machine-learning xgboost xgbregressor
当我使用 XGBoostRegressor 预测股票价格时,我尝试拟合该模型。
\n # XGBoostRegressor\nparameters = {\n 'n_estimators': [100, 200, 300, 400],\n 'learning_rate': [0.001, 0.005, 0.01, 0.05],\n 'max_depth': [8, 10, 12, 15],\n 'gamma': [0.001, 0.005, 0.01, 0.02],\n 'random_state': [42]\n}\n\neval_set = [(X_train, y_train), (X_valid, y_valid)]\nmodel = xgb.XGBRegressor(eval_set = eval_set, objective = 'reg:squarederror', verbose = False)\nclf = GridSearchCV(model, parameters)\n\nclf.fit(X_train, y_train)\n\nprint(f'Best params: {clf.best_params_}')\nprint(f'Best validation score = {clf.best_score_}')\nRun Code Online (Sandbox Code Playgroud)\n然后我收到一个警告。
\nParameters: { "eval_set", "verbose" } might not be used.\n This could be a false alarm, with some parameters getting used by language bindings but\n then being mistakenly passed down to XGBoost core, or some parameter actually being used\n but getting flagged wrongly here. Please open an issue if you find any such cases.\nRun Code Online (Sandbox Code Playgroud)\n重复,再重复。\n我已经更改了参数,但没有用。而且我没有找到任何方法来解决它\xef\xbc\x9f\n有人遇到这个问题吗?以及如何解决?\n谢谢。
\n将 eval_set 和 verbose 传递给 fit() 而不是 XGBRegressor()
clf.fit(X_train, y_train, eval_set=eval_set, verbose=False)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
4100 次 |
| 最近记录: |