我想解构 pandas DataFrame,使用列标题作为新的数据列,并创建一个包含行索引和列的所有组合的列表。展示比解释更容易:
index_col = ["store1", "store2", "store3"]
cols = ["January", "February", "March"]
values = [[2,3,4],[5,6,7],[8,9,10]]
df = pd.DataFrame(values, index=index_col, columns=cols)
Run Code Online (Sandbox Code Playgroud)
我希望从这个 DataFrame 中获得以下列表:
[['store1', 'January', 2],
['store1', 'February', 3],
['store1', 'March', 4],
['store2', 'January', 5],
['store2', 'February', 6],
['store2', 'March', 7],
['store3', 'January', 8],
['store3', 'February', 9],
['store3', 'March', 10]]
Run Code Online (Sandbox Code Playgroud)
有没有方便的方法来做到这一点?
d.b*_*d.b 10
df.unstack().swaplevel().reset_index().values.tolist()
#OR
df.reset_index().melt(id_vars="index").values.tolist()
# [['store1', 'January', 2],
# ['store2', 'January', 5],
# ['store3', 'January', 8],
# ['store1', 'February', 3],
# ['store2', 'February', 6],
# ['store3', 'February', 9],
# ['store1', 'March', 4],
# ['store2', 'March', 7],
# ['store3', 'March', 10]]
Run Code Online (Sandbox Code Playgroud)
接下来,元素的顺序将与问题中的输出匹配。
df.transpose().unstack().reset_index().values.tolist()
# [['store1', 'January', 2],
# ['store1', 'February', 3],
# ['store1', 'March', 4],
# ['store2', 'January', 5],
# ['store2', 'February', 6],
# ['store2', 'March', 7],
# ['store3', 'January', 8],
# ['store3', 'February', 9],
# ['store3', 'March', 10]]
Run Code Online (Sandbox Code Playgroud)
小智 6
真正的熊猫风格:
lst = [[*k, v] for k, v in df.unstack().swaplevel().to_dict().items()]
Run Code Online (Sandbox Code Playgroud)