Sai*_*ibō 9 huggingface-transformers huggingface-tokenizers
我正在按照 HuggingFace 的序列分类教程学习 NLP https://huggingface.co/transformers/custom_datasets.html#sequence-classification-with-imdb-reviews
原始代码运行没有问题。但是,当我尝试加载不同的标记生成器(例如来自 的标记生成器)时google/bert_uncased_L-4_H-256_A-4,会出现以下警告:
Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.
from transformers import AutoTokenizer
from pathlib import Path
def read_imdb_split(split_dir):
split_dir = Path(split_dir)
texts = []
labels = []
for label_dir in ["pos", "neg"]:
for text_file in (split_dir/label_dir).iterdir():
texts.append(text_file.read_text())
labels.append(0 if label_dir is "neg" else 1)
return texts[:50], labels[:50]
if __name__ == '__main__':
test_texts, test_labels = read_imdb_split('aclImdb/test')
tokenizer = AutoTokenizer.from_pretrained('google/bert_uncased_L-4_H-256_A-4')
test_encodings = tokenizer(test_texts, truncation=True, padding=True)
for input_id in test_encodings["input_ids"]:
print(len(input_id))
Run Code Online (Sandbox Code Playgroud)
输出显示所有input_id的len = 1288。看起来它们都被填充到1288。但是我如何指定截断目标长度,例如512?
Sai*_*ibō 22
指定model_max_length加载分词器的时间。
tokenizer = AutoTokenizer.from_pretrained('google/bert_uncased_L-4_H-256_A-4', model_max_length=512)
| 归档时间: |
|
| 查看次数: |
15107 次 |
| 最近记录: |