Sho*_*na 3 python artificial-intelligence deep-learning pytorch
我是深度学习的新手,我使用下面的代码创建了一个模型来预测植物病害
class CNN_Model(nn.Module):
def __init__(self):
super(CNN_Model, self).__init__()
self.cnn_model = nn.Sequential(
nn.Conv2d(3, 16, 3),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Conv2d(16, 32, 5),
nn.ReLU(),
nn.MaxPool2d(2, 2),
)
self.fc_model = nn.Sequential(
nn.Flatten(),
nn.Linear(800, 300),
nn.ReLU(),
nn.Linear(300, 38),
nn.Softmax(dim=1)
)
def forward(self, x):
x = self.cnn_model(x)
x = self.fc_model(x)
return x
Run Code Online (Sandbox Code Playgroud)
model = CNN_Model()
out = model(imgs)
out
Run Code Online (Sandbox Code Playgroud)
当我尝试运行上面的代码时,出现错误 mat1 和 mat2 无法相乘。我已经尝试过针对类似问题发布的答案,但我的问题仍然没有解决。
RuntimeError Traceback (most recent call last)
/tmp/ipykernel_66/1768380315.py in <module>
----> 1 out = model(imgs)
2 out
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1050 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051 return forward_call(*input, **kwargs)
1052 # Do not call functions when jit is used
1053 full_backward_hooks, non_full_backward_hooks = [], []
/tmp/ipykernel_66/1577403502.py in forward(self, x)
26 def forward(self, x):
27 x = self.cnn_model(x)
---> 28 x = self.fc_model(x)
29
30 return x
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1050 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051 return forward_call(*input, **kwargs)
1052 # Do not call functions when jit is used
1053 full_backward_hooks, non_full_backward_hooks = [], []
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/container.py in forward(self, input)
137 def forward(self, input):
138 for module in self:
--> 139 input = module(input)
140 return input
141
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1050 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1051 return forward_call(*input, **kwargs)
1052 # Do not call functions when jit is used
1053 full_backward_hooks, non_full_backward_hooks = [], []
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/linear.py in forward(self, input)
94
95 def forward(self, input: Tensor) -> Tensor:
---> 96 return F.linear(input, self.weight, self.bias)
97
98 def extra_repr(self) -> str:
/opt/conda/lib/python3.7/site-packages/torch/nn/functional.py in linear(input, weight, bias)
1845 if has_torch_function_variadic(input, weight):
1846 return handle_torch_function(linear, (input, weight), input, weight, bias=bias)
-> 1847 return torch._C._nn.linear(input, weight, bias)
1848
1849
RuntimeError: mat1 and mat2 shapes cannot be multiplied (32x119072 and 800x300)
Run Code Online (Sandbox Code Playgroud)
请有人帮助我解决这些错误。
Iva*_*van 13
尺寸不匹配误差如图所示32x119072 and 800x300。第一个形状是指输入张量,第二个形状是层的参数。如果您查看模型定义,您会发现它与第一个完全连接的层(即扁平化之后的层)匹配。事实上,nn.Linear(800, 300)本来期待800-feature 张量,但得到119072-feature 张量。
您需要修改此线性层以匹配传入的张量展平空间形状。但请注意该值将如何取决于输入 CNN 的图像,最终这将决定输入分类器的张量的大小。解决这个问题的一般方法是使用自适应层:例如无论nn.AdaptiveMaxPool2d输入维度大小如何,自适应层都将始终提供相同的输出形状。
| 归档时间: |
|
| 查看次数: |
40899 次 |
| 最近记录: |