我按照 Simon Marlow 的关于并行 Haskell 的书(第 1 章)使用rpar/ rseq。
下面是代码(解决Squid Game桥模拟):
{-# LANGUAGE FlexibleContexts #-}
import Control.DeepSeq (force)
import Control.Exception (evaluate)
import Control.Parallel.Strategies
import Data.Array.IO
( IOUArray,
getAssocs,
newListArray,
readArray,
writeArray,
)
import Data.Functor ((<&>))
import System.Environment (getArgs)
import System.Random (randomRIO)
game ::
Int -> -- number of steps
Int -> -- number of glass at each step
Int -> -- number of players
IO Int -- return the number of survivors
game totalStep totalGlass = go 1 totalGlass
where
go currentStep currentGlass numSurvivors
| numSurvivors == 0 || currentStep > totalStep = return numSurvivors
| otherwise = do
r <- randomRIO (1, currentGlass)
if r == 1
then go (currentStep + 1) totalGlass numSurvivors
else go currentStep (currentGlass - 1) (numSurvivors - 1)
simulate :: Int -> IO Int -> IO [(Int, Int)]
simulate n game =
(newListArray (0, 16) (replicate 17 0) :: IO (IOUArray Int Int))
>>= go 1
>>= getAssocs
where
go i marr
| i <= n = do
r <- game
readArray marr r >>= writeArray marr r . (+ 1)
go (i + 1) marr
| otherwise = return marr
main1 :: IO ()
main1 = do
[n, steps, glassNum, playNum] <- getArgs <&> Prelude.map read
res <- simulate n (game steps glassNum playNum)
mapM_ print res
main2 :: IO ()
main2 = do
putStrLn "Running main2"
[n, steps, glassNum, playNum] <- getArgs <&> Prelude.map read
res <- runEval $ do
r1 <- rpar $ simulate (div n 2) (game steps glassNum playNum) >>= evaluate . force
r2 <- rpar $ simulate (div n 2) (game steps glassNum playNum) >>= evaluate . force
rseq r1
rseq r2
return $
(\l1 l2 -> zipWith (\e1 e2 -> (fst e1, snd e1 + snd e2)) l1 l2)
<$> r1
<*> r2
mapM_ print res
main = main2
Run Code Online (Sandbox Code Playgroud)
对于 main2,我使用以下方法进行编译:
ghc -O2 -threaded ./squid.hs
Run Code Online (Sandbox Code Playgroud)
并运行为:
./squid 10000000 18 2 16 +RTS -N2
Run Code Online (Sandbox Code Playgroud)
我不明白为什么main1比main2whilemain2具有并行性更快。
谁能给我一些关于我的代码的评论,看看这是否是并行性的正确使用?
更新:
这是更新的版本(新的random使用起来相当麻烦):
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE RankNTypes #-}
import Control.Monad.ST (ST, runST)
import Control.Parallel.Strategies (rpar, rseq, runEval)
import Data.Array.ST
( STUArray,
getAssocs,
newListArray,
readArray,
writeArray,
)
import Data.Functor ((<&>))
import System.Environment (getArgs)
import System.Random (StdGen)
import System.Random.Stateful
( StdGen,
applySTGen,
mkStdGen,
runSTGen,
uniformR,
)
game ::
Int -> -- number of steps
Int -> -- number of glass at each step
Int -> -- number of players
StdGen ->
ST s (Int, StdGen) -- return the number of survivors
game ns ng = go 1 ng
where
go
!cs -- current step number
!cg -- current glass number
!ns -- number of survivors
!pg -- pure generator
| ns == 0 || cs > ns = return (ns, pg)
| otherwise = do
let (r, g') = runSTGen pg (applySTGen (uniformR (1, cg)))
if r == 1
then go (cs + 1) ng ns g'
else go cs (cg - 1) (ns - 1) g'
simulate :: Int -> (forall s. StdGen -> ST s (Int, StdGen)) -> [(Int, Int)]
simulate n game =
runST $
(newListArray (0, 16) (replicate 17 0) :: ST s1 (STUArray s1 Int Int))
>>= go 1 (mkStdGen n)
>>= getAssocs
where
go !i !g !marr
| i <= n = do
(r, g') <- game g
readArray marr r >>= writeArray marr r . (+ 1)
go (i + 1) g' marr
| otherwise = return marr
main :: IO ()
main = do
[n, steps, glassNum, playNum] <- getArgs <&> Prelude.map read
let res = runEval $ do
r1 <- rpar $ simulate (div n 2 - 1) (game steps glassNum playNum)
r2 <- rpar $ simulate (div n 2 + 1) (game steps glassNum playNum)
rseq r1
rseq r2
return $ zipWith (\e1 e2 -> (fst e1, snd e1 + snd e2)) r1 r2
mapM_ print res
Run Code Online (Sandbox Code Playgroud)
更新2:
使用纯代码,耗时可降至 7 秒。
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE RankNTypes #-}
import Control.Monad.ST ( runST, ST )
import Control.Parallel ( par, pseq )
import Data.Array.ST
( getAssocs, newListArray, readArray, writeArray, STUArray )
import Data.Functor ((<&>))
import System.Environment (getArgs)
import System.Random (StdGen, uniformR, mkStdGen)
game ::
Int -> -- number of total steps
Int -> -- number of glass at each step
Int -> -- number of players
StdGen ->
(Int, StdGen) -- return the number of survivors
game ts ng = go 1 ng
where
go
!cs -- current step number
!cg -- current glass number
!ns -- number of survivors
!pg -- pure generator
| ns == 0 || cs > ts = (ns, pg)
| otherwise = do
let (r, g') = uniformR (1, cg) pg
if r == 1
then go (cs + 1) ng ns g'
else go cs (cg - 1) (ns - 1) g'
simulate :: Int -> (StdGen -> (Int, StdGen)) -> [(Int, Int)]
simulate n game =
runST $
(newListArray (0, 16) (replicate 17 0) :: ST s1 (STUArray s1 Int Int))
>>= go 1 (mkStdGen n)
>>= getAssocs
where
go !i !g !marr
| i <= n = do
let (r, g') = game g
readArray marr r >>= writeArray marr r . (+ 1)
go (i + 1) g' marr
| otherwise = return marr
main :: IO ()
main = do
[n, steps, glassNum, playNum] <- getArgs <&> Prelude.map read
let r1 = simulate (div n 2 - 1) (game steps glassNum playNum)
r2 = simulate (div n 2 + 1) (game steps glassNum playNum)
res = zipWith (\e1 e2 -> (fst e1, snd e1 + snd e2)) r1 r2
res' = par r1 (pseq r2 res)
mapM_ print res'
Run Code Online (Sandbox Code Playgroud)
您实际上没有使用任何并行性。你写
r1 <- rpar $ simulate (div n 2) (game steps glassNum playNum) >>= evaluate . force
Run Code Online (Sandbox Code Playgroud)
这会引发一个线程来评估操作IO,而不是运行它。那没有用。
由于您simulate本质上是pure,因此您应该通过交换适当的数组类型等将其从 转换IO为。然后您就可以实际上并行工作。我认为这些调用在上下文中没有用/合适;他们会更快地释放阵列,但代价高昂。ST srpar (runST $ simulate ...)force