Joy*_*dal 21 python nltk pytorch
因此,我尝试按照本教程使用 Pytorch 编写聊天机器人。
代码:(最小的,可重复的)
tags = []
for intent in intents['intents']:
tag = intent['tag']
tags.append(tag)
tags = sorted(set(tags))
X_train = []
X_train = np.array(X_train)
class ChatDataset(Dataset):
def __init__(self):
self.n_sample = len(X_train)
self.x_data = X_train
#Hyperparameter
batch_size = 8
hidden_size = 47
output_size = len(tags)
input_size = len(X_train[0])
learning_rate = 0.001
num_epochs = 1000
dataset = ChatDataset()
train_loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # using gpu
model = NeuralNet(input_size, hidden_size, output_size).to(device)
# loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for (words, labels) in train_loader:
words = words.to(device)
labels = labels.to(device)
#forward
outputs = model(words)
loss = criterion(outputs, labels) #the line where it is showing the problem
#backward and optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch +1) % 100 == 0:
print(f'epoch {epoch+1}/{num_epochs}, loss={loss.item():.4f}')
print(f'final loss, loss={loss.item():.4f}')
Run Code Online (Sandbox Code Playgroud)
完整代码(如果需要)
我在尝试获取损失函数时收到此错误。
RuntimeError: "nll_loss_forward_reduce_cuda_kernel_2d_index" not implemented for 'Int'
追溯:
Traceback (most recent call last): File "train.py", line 91, in <module> loss = criterion(outputs, labels) File "C:\Users\PC\anaconda3\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "C:\Users\PC\anaconda3\lib\site-packages\torch\nn\modules\loss.py", line 1150, in forward return F.cross_entropy(input, target, weight=self.weight, File "C:\Users\PC\anaconda3\lib\site-packages\torch\nn\functional.py", line 2846, in cross_entropy return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing) RuntimeError: "nll_loss_forward_reduce_cuda_kernel_2d_index" not implemented for 'Int'
但看看教程,它似乎在那里完美地工作,但在我的情况下却不然。
现在做什么?
谢谢。
Ham*_*zah 35
torch.LongTensor
就我而言,我通过在将数据存储到 GPU 之前将目标类型转换为 来解决这个问题,如下所示:
for inputs, targets in data_loader:
targets = targets.type(torch.LongTensor) # casting to long
inputs, targets = inputs.to(device), targets.to(device)
...
...
loss = self.criterion(output, targets)
Run Code Online (Sandbox Code Playgroud)
小智 11
我猜您遵循了 YouTube 上的 Python Engineer 教程(我也遵循了并且遇到了同样的问题!)。@Phoenix 的解决方案对我有用。我所需要做的就是像这样投射标签(他称之为目标):
for epoch in range(num_epochs):
for (words, labels) in train_loader:
words = words.to(device)
labels = labels.type(torch.LongTensor) # <---- Here (casting)
labels = labels.to(device)
#forward
outputs = model(words)
loss = criterion(outputs, labels)
#backward and optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch + 1) % 100 == 0:
print(f'epoch{epoch+1}/{num_epochs}, loss={loss.item():.4f}')
Run Code Online (Sandbox Code Playgroud)
它起作用了,损失的演变被打印在终端上。谢谢@凤凰!
PS:这是我从以下位置获得此代码的系列视频的链接:Python 工程师的视频(这是 4 部分中的第 4 部分)
只需验证您model
返回的内容,它应该是 float
类型,即您的outputs
变量否则将其更改为类型我认为您已在前向方法中float
返回类型 int
归档时间: |
|
查看次数: |
57482 次 |
最近记录: |