Ada*_*dam 9 python machine-learning pytorch
我很困惑是否可以在 CUDA 上运行 int8 量化模型,或者只能使用 fakequantise 在 CUDA 上训练量化模型以部署在另一个后端(例如 CPU)上。
我想使用实际的 int8 指令而不是 FakeQuantized float32 指令在 CUDA 上运行模型,并享受效率提升。奇怪的是,Pytorch 文档对此没有具体说明。是否可以使用不同的框架在 CUDA 上运行量化模型,例如TensorFlow我很想知道。
这是准备量化模型的代码(使用训练后量化)。该模型是带有 nn.Conv2d 和 nn.LeakyRelu 以及 nn.MaxPool 模块的普通 CNN:
model_fp = torch.load(models_dir+net_file)
model_to_quant = copy.deepcopy(model_fp)
model_to_quant.eval()
model_to_quant = quantize_fx.fuse_fx(model_to_quant)
qconfig_dict = {"": torch.quantization.get_default_qconfig('qnnpack')}
model_prepped = quantize_fx.prepare_fx(model_to_quant, qconfig_dict)
model_prepped.eval()
model_prepped.to(device='cuda:0')
train_data = ImageDataset(img_dir, train_data_csv, 'cuda:0')
train_loader = DataLoader(train_data, batch_size=32, shuffle=True, pin_memory=True)
for i, (input, _) in enumerate(train_loader):
if i > 1: break
print('batch', i+1, end='\r')
input = input.to('cuda:0')
model_prepped(input)
Run Code Online (Sandbox Code Playgroud)
这实际上量化了模型:
model_quantised = quantize_fx.convert_fx(model_prepped)
model_quantised.eval()
Run Code Online (Sandbox Code Playgroud)
这是在 CUDA 上运行量化模型的尝试,并引发 NotImplementedError,当我在 CPU 上运行它时,它工作正常:
model_quantised = model_quantised.to('cuda:0')
for i, _ in train_loader:
input = input.to('cuda:0')
out = model_quantised(input)
print(out, out.shape)
break
Run Code Online (Sandbox Code Playgroud)
这是错误:
Traceback (most recent call last):
File "/home/adam/Desktop/thesis/Ship Detector/quantisation.py", line 54, in <module>
out = model_quantised(input)
File "/home/adam/.local/lib/python3.9/site-packages/torch/fx/graph_module.py", line 513, in wrapped_call
raise e.with_traceback(None)
NotImplementedError: Could not run 'quantized::conv2d.new' with arguments from the 'QuantizedCUDA' backend.
This could be because the operator doesn't exist for this backend, or was omitted during the selective/custom build process (if using custom build).
If you are a Facebook employee using PyTorch on mobile, please visit https://fburl.com/ptmfixes for possible resolutions.
'quantized::conv2d.new' is only available for these backends: [QuantizedCPU, BackendSelect, Named, ADInplaceOrView, AutogradOther, AutogradCPU, AutogradCUDA, AutogradXLA, UNKNOWN_TENSOR_TYPE_ID, AutogradMLC, Tracer, Autocast, Batched, VmapMode].
Run Code Online (Sandbox Code Playgroud)
从 [this][1] 博客来看,您似乎无法在 GPU 上运行量化模型。
PyTorch 中的量化目前仅支持 CPU。量化不是CPU特定的技术(例如NVIDIA的TensorRT可用于在GPU上实现量化)。然而,GPU 上的推理时间通常已经“足够快”,并且 CPU 对于大规模模型服务器部署更具吸引力(由于复杂的成本因素超出了本文的范围)。因此,从 PyTorch 1.6 开始,本机 API 中仅提供 CPU 后端。
[1]:https://spell.ml/blog/pytorch-quantization-X8e7wBAAACIAHPhT# :~: text=Quantization%20in%20PyTorch%20is%20当前,到%20在%20GPU上实现%20quantization%20)。
| 归档时间: |
|
| 查看次数: |
7233 次 |
| 最近记录: |