具有连续色标的 Plotly Express 线

use*_*780 6 python plotly

我有下面的代码

import plotly.express as px
import pandas as pd
import numpy as np

x = [1,2,3,4,5,6]

df = pd.DataFrame(
    {
        'x': x*3,
        'y': list(np.array(x)) + list(np.array(x)**2) + list(np.array(x)**.5),
        'color': list(np.array(x)*0) + list(np.array(x)*0+1) + list(np.array(x)*0+2),
    }
)

for plotting_function in [px.scatter, px.line]:
    fig = plotting_function(
        df,
        x = 'x',
        y = 'y',
        color = 'color',
        title = f'Using {plotting_function.__name__}',
    )
    fig.show()

Run Code Online (Sandbox Code Playgroud)

产生以下两个图:

在此输入图像描述

在此输入图像描述

由于某种原因px.line,没有产生我想要的连续色阶,并且在文档中px.scatter我找不到如何将点与线连接起来。如何生成具有连续色标和连接每条迹线点的线的绘图?

这是我想要制作的情节: 在此输入图像描述

Man*_*oya 5

您只需使用以下 2 个参数即可实现此目的px.line

  • markers=True
  • color_discrete_sequence=my_plotly_continuous_sequence

完整的代码看起来像这样(注意列表切片,[::4]以便颜色间隔良好):

import plotly.express as px
import pandas as pd
import numpy as np

x = [1, 2, 3, 4, 5, 6]

df = pd.DataFrame(
    {
        'x': x * 3,
        'y': list(np.array(x)) + list(np.array(x) ** 2) + list(np.array(x) ** .5),
        'color': list(np.array(x) * 0) + list(np.array(x) * 0 + 1) + list(np.array(x) * 0 + 2),
    }
)

fig = px.line(
    df,
    x='x',
    y='y',
    color='color',
    color_discrete_sequence=px.colors.sequential.Plasma[::4],
    markers=True,
    template='plotly'
)
fig.show()
Run Code Online (Sandbox Code Playgroud)

这会产生以下输出。

阴谋

如果您的线条多于颜色图中存在的颜色,您可以构造一个自定义色阶,以便获得一个完整的序列而不是循环序列:

rgb = px.colors.convert_colors_to_same_type(px.colors.sequential.RdBu)[0]

colorscale = []
n_steps = 4  # Control the number of colors in the final colorscale
for i in range(len(rgb) - 1):
    for step in np.linspace(0, 1, n_steps):
        colorscale.append(px.colors.find_intermediate_color(rgb[i], rgb[i + 1], step, colortype='rgb'))

fig = px.line(df_e, x='temperature', y='probability', color='year', color_discrete_sequence=colorscale, height=900)
fig.show()
Run Code Online (Sandbox Code Playgroud)

地块2


Der*_*k O 4

我不确定仅使用plotly.express. 如果您使用,那么您可以按照此答案中的描述px.line传递参数,但从 px.line 文档来看,它看起来不支持连续色阶。markers=True

更新的答案:为了拥有将线条和标记组合在一起的图例,go.Scatter与参数一起使用可能是最简单的mode='lines+markers'。您需要一次添加一条迹线(通过一次绘制数据的每个唯一颜色部分),以便能够控制图例中的每条线+标记组。

绘制这些迹线时,您将需要一些函数来从连续色标中检索线条的颜色,因为除非您指定它们,否则 go.Scatter 不会知道您的线条应该是什么颜色 - 值得庆幸的是,这已在此处得到解答

此外,您将无法生成一次添加一种颜色的标记的颜色条,因此要添加颜色条,您可以使用 一次绘制所有标记go.Scatter,但使用参数marker=dict(size=0, color="rgba(0,0,0,0)", colorscale='Plasma', colorbar=dict(thickness=20))显示颜色条,但确保这些重复的标记不可见。

将所有这些放在一起:

# import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import numpy as np

x = [1,2,3,4,5,6]

df = pd.DataFrame(
    {
        'x': x*3,
        'y': list(np.array(x)) + list(np.array(x)**2) + list(np.array(x)**.5),
        'color': list(np.array(x)*0) + list(np.array(x)*0+1) + list(np.array(x)*0+2),
    }
)

# This function allows you to retrieve colors from a continuous color scale
# by providing the name of the color scale, and the normalized location between 0 and 1
# Reference: /sf/ask/4389704021/

def get_color(colorscale_name, loc):
    from _plotly_utils.basevalidators import ColorscaleValidator
    # first parameter: Name of the property being validated
    # second parameter: a string, doesn't really matter in our use case
    cv = ColorscaleValidator("colorscale", "")
    # colorscale will be a list of lists: [[loc1, "rgb1"], [loc2, "rgb2"], ...] 
    colorscale = cv.validate_coerce(colorscale_name)
    
    if hasattr(loc, "__iter__"):
        return [get_continuous_color(colorscale, x) for x in loc]
    return get_continuous_color(colorscale, loc)
        

# Identical to Adam's answer
import plotly.colors
from PIL import ImageColor

def get_continuous_color(colorscale, intermed):
    """
    Plotly continuous colorscales assign colors to the range [0, 1]. This function computes the intermediate
    color for any value in that range.

    Plotly doesn't make the colorscales directly accessible in a common format.
    Some are ready to use:
    
        colorscale = plotly.colors.PLOTLY_SCALES["Greens"]

    Others are just swatches that need to be constructed into a colorscale:

        viridis_colors, scale = plotly.colors.convert_colors_to_same_type(plotly.colors.sequential.Viridis)
        colorscale = plotly.colors.make_colorscale(viridis_colors, scale=scale)

    :param colorscale: A plotly continuous colorscale defined with RGB string colors.
    :param intermed: value in the range [0, 1]
    :return: color in rgb string format
    :rtype: str
    """
    if len(colorscale) < 1:
        raise ValueError("colorscale must have at least one color")

    hex_to_rgb = lambda c: "rgb" + str(ImageColor.getcolor(c, "RGB"))

    if intermed <= 0 or len(colorscale) == 1:
        c = colorscale[0][1]
        return c if c[0] != "#" else hex_to_rgb(c)
    if intermed >= 1:
        c = colorscale[-1][1]
        return c if c[0] != "#" else hex_to_rgb(c)

    for cutoff, color in colorscale:
        if intermed > cutoff:
            low_cutoff, low_color = cutoff, color
        else:
            high_cutoff, high_color = cutoff, color
            break

    if (low_color[0] == "#") or (high_color[0] == "#"):
        # some color scale names (such as cividis) returns:
        # [[loc1, "hex1"], [loc2, "hex2"], ...]
        low_color = hex_to_rgb(low_color)
        high_color = hex_to_rgb(high_color)

    return plotly.colors.find_intermediate_color(
        lowcolor=low_color,
        highcolor=high_color,
        intermed=((intermed - low_cutoff) / (high_cutoff - low_cutoff)),
        colortype="rgb",
    )

fig = go.Figure()

## add the lines+markers
for color_val in df.color.unique():
    color_val_normalized = (color_val - min(df.color)) / (max(df.color) - min(df.color))
    # print(f"color_val={color_val}, color_val_normalized={color_val_normalized}")
    df_subset = df[df['color'] == color_val]
    fig.add_trace(go.Scatter(
        x=df_subset['x'],
        y=df_subset['y'],
        mode='lines+markers',
        marker=dict(color=get_color('Plasma', color_val_normalized)),
        name=f"line+marker {color_val}",
        legendgroup=f"line+marker {color_val}"
    ))

## add invisible markers to display the colorbar without displaying the markers
fig.add_trace(go.Scatter(
    x=df['x'],
    y=df['y'],
    mode='markers',
    marker=dict(
        size=0, 
        color="rgba(0,0,0,0)", 
        colorscale='Plasma', 
        cmin=min(df.color),
        cmax=max(df.color),
        colorbar=dict(thickness=40)
    ),
    showlegend=False
))

fig.update_layout(
    legend=dict(
    yanchor="top",
    y=0.99,
    xanchor="left",
    x=0.01),
    yaxis_range=[min(df.y)-2,max(df.y)+2]
)

fig.show()
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述