我有下面的代码
import plotly.express as px
import pandas as pd
import numpy as np
x = [1,2,3,4,5,6]
df = pd.DataFrame(
{
'x': x*3,
'y': list(np.array(x)) + list(np.array(x)**2) + list(np.array(x)**.5),
'color': list(np.array(x)*0) + list(np.array(x)*0+1) + list(np.array(x)*0+2),
}
)
for plotting_function in [px.scatter, px.line]:
fig = plotting_function(
df,
x = 'x',
y = 'y',
color = 'color',
title = f'Using {plotting_function.__name__}',
)
fig.show()
Run Code Online (Sandbox Code Playgroud)
产生以下两个图:
由于某种原因px.line,没有产生我想要的连续色阶,并且在文档中px.scatter我找不到如何将点与线连接起来。如何生成具有连续色标和连接每条迹线点的线的绘图?
您只需使用以下 2 个参数即可实现此目的px.line:
markers=Truecolor_discrete_sequence=my_plotly_continuous_sequence完整的代码看起来像这样(注意列表切片,[::4]以便颜色间隔良好):
import plotly.express as px
import pandas as pd
import numpy as np
x = [1, 2, 3, 4, 5, 6]
df = pd.DataFrame(
{
'x': x * 3,
'y': list(np.array(x)) + list(np.array(x) ** 2) + list(np.array(x) ** .5),
'color': list(np.array(x) * 0) + list(np.array(x) * 0 + 1) + list(np.array(x) * 0 + 2),
}
)
fig = px.line(
df,
x='x',
y='y',
color='color',
color_discrete_sequence=px.colors.sequential.Plasma[::4],
markers=True,
template='plotly'
)
fig.show()
Run Code Online (Sandbox Code Playgroud)
这会产生以下输出。
如果您的线条多于颜色图中存在的颜色,您可以构造一个自定义色阶,以便获得一个完整的序列而不是循环序列:
rgb = px.colors.convert_colors_to_same_type(px.colors.sequential.RdBu)[0]
colorscale = []
n_steps = 4 # Control the number of colors in the final colorscale
for i in range(len(rgb) - 1):
for step in np.linspace(0, 1, n_steps):
colorscale.append(px.colors.find_intermediate_color(rgb[i], rgb[i + 1], step, colortype='rgb'))
fig = px.line(df_e, x='temperature', y='probability', color='year', color_discrete_sequence=colorscale, height=900)
fig.show()
Run Code Online (Sandbox Code Playgroud)
我不确定仅使用plotly.express. 如果您使用,那么您可以按照此答案中的描述px.line传递参数,但从 px.line 文档来看,它看起来不支持连续色阶。markers=True
更新的答案:为了拥有将线条和标记组合在一起的图例,go.Scatter与参数一起使用可能是最简单的mode='lines+markers'。您需要一次添加一条迹线(通过一次绘制数据的每个唯一颜色部分),以便能够控制图例中的每条线+标记组。
绘制这些迹线时,您将需要一些函数来从连续色标中检索线条的颜色,因为除非您指定它们,否则 go.Scatter 不会知道您的线条应该是什么颜色 - 值得庆幸的是,这已在此处得到解答。
此外,您将无法生成一次添加一种颜色的标记的颜色条,因此要添加颜色条,您可以使用 一次绘制所有标记go.Scatter,但使用参数marker=dict(size=0, color="rgba(0,0,0,0)", colorscale='Plasma', colorbar=dict(thickness=20))显示颜色条,但确保这些重复的标记不可见。
将所有这些放在一起:
# import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import numpy as np
x = [1,2,3,4,5,6]
df = pd.DataFrame(
{
'x': x*3,
'y': list(np.array(x)) + list(np.array(x)**2) + list(np.array(x)**.5),
'color': list(np.array(x)*0) + list(np.array(x)*0+1) + list(np.array(x)*0+2),
}
)
# This function allows you to retrieve colors from a continuous color scale
# by providing the name of the color scale, and the normalized location between 0 and 1
# Reference: /sf/ask/4389704021/
def get_color(colorscale_name, loc):
from _plotly_utils.basevalidators import ColorscaleValidator
# first parameter: Name of the property being validated
# second parameter: a string, doesn't really matter in our use case
cv = ColorscaleValidator("colorscale", "")
# colorscale will be a list of lists: [[loc1, "rgb1"], [loc2, "rgb2"], ...]
colorscale = cv.validate_coerce(colorscale_name)
if hasattr(loc, "__iter__"):
return [get_continuous_color(colorscale, x) for x in loc]
return get_continuous_color(colorscale, loc)
# Identical to Adam's answer
import plotly.colors
from PIL import ImageColor
def get_continuous_color(colorscale, intermed):
"""
Plotly continuous colorscales assign colors to the range [0, 1]. This function computes the intermediate
color for any value in that range.
Plotly doesn't make the colorscales directly accessible in a common format.
Some are ready to use:
colorscale = plotly.colors.PLOTLY_SCALES["Greens"]
Others are just swatches that need to be constructed into a colorscale:
viridis_colors, scale = plotly.colors.convert_colors_to_same_type(plotly.colors.sequential.Viridis)
colorscale = plotly.colors.make_colorscale(viridis_colors, scale=scale)
:param colorscale: A plotly continuous colorscale defined with RGB string colors.
:param intermed: value in the range [0, 1]
:return: color in rgb string format
:rtype: str
"""
if len(colorscale) < 1:
raise ValueError("colorscale must have at least one color")
hex_to_rgb = lambda c: "rgb" + str(ImageColor.getcolor(c, "RGB"))
if intermed <= 0 or len(colorscale) == 1:
c = colorscale[0][1]
return c if c[0] != "#" else hex_to_rgb(c)
if intermed >= 1:
c = colorscale[-1][1]
return c if c[0] != "#" else hex_to_rgb(c)
for cutoff, color in colorscale:
if intermed > cutoff:
low_cutoff, low_color = cutoff, color
else:
high_cutoff, high_color = cutoff, color
break
if (low_color[0] == "#") or (high_color[0] == "#"):
# some color scale names (such as cividis) returns:
# [[loc1, "hex1"], [loc2, "hex2"], ...]
low_color = hex_to_rgb(low_color)
high_color = hex_to_rgb(high_color)
return plotly.colors.find_intermediate_color(
lowcolor=low_color,
highcolor=high_color,
intermed=((intermed - low_cutoff) / (high_cutoff - low_cutoff)),
colortype="rgb",
)
fig = go.Figure()
## add the lines+markers
for color_val in df.color.unique():
color_val_normalized = (color_val - min(df.color)) / (max(df.color) - min(df.color))
# print(f"color_val={color_val}, color_val_normalized={color_val_normalized}")
df_subset = df[df['color'] == color_val]
fig.add_trace(go.Scatter(
x=df_subset['x'],
y=df_subset['y'],
mode='lines+markers',
marker=dict(color=get_color('Plasma', color_val_normalized)),
name=f"line+marker {color_val}",
legendgroup=f"line+marker {color_val}"
))
## add invisible markers to display the colorbar without displaying the markers
fig.add_trace(go.Scatter(
x=df['x'],
y=df['y'],
mode='markers',
marker=dict(
size=0,
color="rgba(0,0,0,0)",
colorscale='Plasma',
cmin=min(df.color),
cmax=max(df.color),
colorbar=dict(thickness=40)
),
showlegend=False
))
fig.update_layout(
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01),
yaxis_range=[min(df.y)-2,max(df.y)+2]
)
fig.show()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
6584 次 |
| 最近记录: |