And*_*ldi 5 python optimization performance numpy fractals
昨天,我看到了有关牛顿分形的新 3Blue1Brown 视频,他对分形的现场表现让我着迷。(以下是感兴趣的人的视频链接,时间为 13:40:https://www.youtube.com/watch? v=-RdOwhmqP5s )
我想自己尝试一下,并尝试用 python 编写它(我认为他也使用 python)。
我花了几个小时试图改进我的幼稚实现,但到了我不知道如何才能让它更快的地步。
代码如下所示:
import os
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
from time import time
def print_fractal(state):
fig = plt.figure(figsize=(8, 8))
gs = GridSpec(1, 1)
axs = [fig.add_subplot(gs[0, 0])]
fig.tight_layout(pad=5)
axs[0].matshow(state)
axs[0].set_xticks([])
axs[0].set_yticks([])
plt.show()
plt.close()
def get_function_value(z):
return z**5 + z**2 - z + 1
def get_function_derivative_value(z):
return 5*z**4 + 2*z - 1
def check_distance(state, roots):
roots2 = np.zeros((roots.shape[0], state.shape[0], state.shape[1]), dtype=complex)
for r in range(roots.shape[0]):
roots2[r] = np.full((state.shape[0], state.shape[1]), roots[r])
dist_2 = np.abs((roots2 - state))
original_state = np.argmin(dist_2, axis=0) + 1
return original_state
def static():
time_start = time()
s = 4
c = [0, 0]
n = 800
polynomial = [1, 0, 0, 1, -1, 1]
roots = np.roots(polynomial)
state = np.transpose((np.linspace(c[0] - s/2, c[0] + s/2, n)[:, None] + 1j*np.linspace(c[1] - s/2, c[1] + s/2, n)))
n_steps = 15
time_setup = time()
for _ in range(n_steps):
state -= (get_function_value(state) / get_function_derivative_value(state))
time_evolution = time()
original_state = check_distance(state, roots)
time_check = time()
print_fractal(original_state)
print("{0:<40}".format("Time to setup the initial configuration:"), "{:20.3f}".format(time_setup - time_start))
print("{0:<40}".format("Time to evolve the state:"), "{:20.3f}".format(time_evolution - time_setup))
print("{0:<40}".format("Time to check the closest roots:"), "{:20.3f}".format(time_check - time_evolution))
Run Code Online (Sandbox Code Playgroud)
平均输出如下所示:
设置初始配置的时间:0.004
状态演化时间:0.796
检查最近根的时间:0.094
很明显,进化部分是该过程的瓶颈。它并不“慢”,但我认为这不足以像视频中那样实时渲染某些内容。我已经通过使用 numpy 向量并避免循环做了我能做的事情,但我想这还不够。这里还可以应用哪些其他技巧?
注意:我尝试使用 numpy.polynomials.Polynomial 类来评估函数,但它比这个版本慢。
np.complex64。(...)
state = np.transpose((np.linspace(c[0] - s/2, c[0] + s/2, n)[:, None]
+ 1j*np.linspace(c[1] - s/2, c[1] + s/2, n)))
state = state.astype(np.complex64)
(...)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
305 次 |
| 最近记录: |