我正在使用 FastAPI 和 pydantic 构建 API。
\n当我遵循 DDD / clean 架构(将模型的定义与持久层的定义分开)时,我在模型中使用标准 lib 数据类,然后使用命令式映射(即经典映射)将它们映射到 SQLAlchemy 表。
\n这很完美:
\n@dataclass\nclass User:\n name: str\n age: int\n\n@pydantic.dataclasses.dataclass\nclass PydanticUser(User):\n ...\nRun Code Online (Sandbox Code Playgroud)\n但是,我在定义具有自引用的类时遇到了问题。
\n从 pydantic\xe2\x80\x99s BaseModel 继承是可行的,但这与 SQLAlchemy 命令式映射不兼容,我想用它来坚持干净的架构/DDD 原则。
\nclass BaseModelPerson(BaseModel):\n name: str\n age: int\n parent_person: BaseModelPerson = None\n\nBaseModelPerson.update_forward_refs()\njohn = BaseModelPerson(name="John", age=49, parent_person=None)\ntim = BaseModelPerson(name="Tim", age=14, parent_person=john)\n\nprint(john)\n# BaseModelPerson(name=\'John\', age=49, parent_person=None)\nprint(tim)\n# BaseModelPerson(name=\'Tim\', age=14, parent_person=BaseModelPerson(name=\'John\', age=49, parent_person=None))\nRun Code Online (Sandbox Code Playgroud)\nfrom __future__ import annotations\nfrom dataclasses import dataclass\n\n@dataclass\nclass StdlibPerson:\n name: str\n age: int\n parent: StdlibPerson\n\n\njohn = StdlibPerson(name="John", age=49, parent=None)\ntim = StdlibPerson(name="Tim", age=14, parent=john)\n\nprint(john)\n# StdlibPerson(name=\'John\', age=49, parent=None)\n\nprint(tim)\n# StdlibPerson(name=\'Tim\', age=14, parent=StdlibPerson(name=\'John\', age=49, parent=None))\n\nRun Code Online (Sandbox Code Playgroud)\n当我尝试将标准库数据类转换为 pydantic 数据类时,出现问题。
\n像这样定义 Pydantic 数据类:
\nPydanticPerson = pydantic.dataclasses.dataclass(StdlibPerson)\nRun Code Online (Sandbox Code Playgroud)\n返回错误:
\n# output (hundreds of lines - that is recursive indeed)\n\n # The name of an attribute on the class where we store the Field\n File "pydantic/main.py", line 990, in pydantic.main.create_model\n File "pydantic/main.py", line 299, in pydantic.main.ModelMetaclass.__new__\n File "pydantic/fields.py", line 411, in pydantic.fields.ModelField.infer\n File "pydantic/fields.py", line 342, in pydantic.fields.ModelField.__init__\n File "pydantic/fields.py", line 456, in pydantic.fields.ModelField.prepare\n File "pydantic/fields.py", line 673, in pydantic.fields.ModelField.populate_validators\n File "pydantic/class_validators.py", line 255, in pydantic.class_validators.prep_validators\n File "pydantic/class_validators.py", line 238, in pydantic.class_validators.make_generic_validator\n File "/usr/lib/python3.9/inspect.py", line 3111, in signature\n return Signature.from_callable(obj, follow_wrapped=follow_wrapped)\n File "/usr/lib/python3.9/inspect.py", line 2860, in from_callable\n return _signature_from_callable(obj, sigcls=cls,\n File "/usr/lib/python3.9/inspect.py", line 2323, in _signature_from_callable\n return _signature_from_function(sigcls, obj,\n File "/usr/lib/python3.9/inspect.py", line 2155, in _signature_from_function\n if _signature_is_functionlike(func):\n File "/usr/lib/python3.9/inspect.py", line 1883, in _signature_is_functionlike\n if not callable(obj) or isclass(obj):\n File "/usr/lib/python3.9/inspect.py", line 79, in isclass\n return isinstance(object, type)\nRecursionError: maximum recursion depth exceeded while calling a Python object\nRun Code Online (Sandbox Code Playgroud)\n像这样定义 StdlibPerson 并不能解决问题:
\n@dataclass\nclass StdlibPerson\n name: str\n age: int\n parent: "Person" = None\nRun Code Online (Sandbox Code Playgroud)\n也不使用 pydantic 文档提供的第二种方式:
\n@pydantic.dataclasses.dataclass\nclass PydanticPerson(StdlibPerson)\n ...\nRun Code Online (Sandbox Code Playgroud)\nfrom __future__ import annotations\nfrom pydantic.dataclasses import dataclass\nfrom typing import Optional\n\n@pydantic.dataclasses.dataclass\nclass PydanticDataclassPerson:\n name: str\n age: int\n parent: Optional[PydanticDataclassPerson] = None\n\njohn = PydanticDataclassPerson(name="John", age=49, parent=None)\n\nTraceback (most recent call last):\n File "<stdin>", line 1, in <module>\n File "<string>", line 6, in __init__\n File "pydantic/dataclasses.py", line 97, in pydantic.dataclasses._generate_pydantic_post_init._pydantic_post_init\n # | False | | |\n File "pydantic/main.py", line 1040, in pydantic.main.validate_model\n File "pydantic/fields.py", line 699, in pydantic.fields.ModelField.validate\npydantic.errors.ConfigError: field "parent" not yet prepared so type is still a ForwardRef, you might need to call PydanticDataclassPerson.update_forward_refs().\n\n>>> PydanticDataclassPerson.update_forward_refs()\nTraceback (most recent call last):\n File "<stdin>", line 1, in <module>\nAttributeError: type object \'PydanticDataclassPerson\' has no attribute \'update_forward_refs\'\n\nRun Code Online (Sandbox Code Playgroud)\n如何使用自引用对象定义 pydantic 模型,以便它与 SQLAlchemy 命令式映射兼容?
\n似乎没有简单的解决方案来使用 FastAPI、自引用对象和 SQLAlchemy 命令式映射构建 REST API。
我决定切换到 FastAPI / GraphQL 堆栈,并使用FastAPI 文档中明确推荐的Strawberry 库。
到目前为止没问题,Strawberry 可以轻松构建 GraphQL 服务器,并且可以轻松处理自引用对象。
#!/usr/bin/env python3.10
# src/my_app/entrypoints/api/schema.py
import typing
import strawberry
@strawberry.type
class Person:
name: str
age: int
parent: Person | None
Run Code Online (Sandbox Code Playgroud)