jva*_*nti 8 string performance r gsub
我已经从 USPS 下载了街道缩写。这是数据:
dput(usps_streets)
structure(list(common_abbrev = c("allee", "alley", "ally", "aly",
"anex", "annex", "annx", "anx", "arc", "arcade", "av", "ave",
"aven", "avenu", "avenue", "avn", "avnue", "bayoo", "bayou",
"bch", "beach", "bend", "bnd", "blf", "bluf", "bluff", "bluffs",
"bot", "btm", "bottm", "bottom", "blvd", "boul", "boulevard",
"boulv", "br", "brnch", "branch", "brdge", "brg", "bridge", "brk",
"brook", "brooks", "burg", "burgs", "byp", "bypa", "bypas", "bypass",
"byps", "camp", "cp", "cmp", "canyn", "canyon", "cnyn", "cape",
"cpe", "causeway", "causwa", "cswy", "cen", "cent", "center",
"centr", "centre", "cnter", "cntr", "ctr", "centers", "cir",
"circ", "circl", "circle", "crcl", "crcle", "circles", "clf",
"cliff", "clfs", "cliffs", "clb", "club", "common", "commons",
"cor", "corner", "corners", "cors", "course", "crse", "court",
"ct", "courts", "cts", "cove", "cv", "coves", "creek", "crk",
"crescent", "cres", "crsent", "crsnt", "crest", "crossing", "crssng",
"xing", "crossroad", "crossroads", "curve", "dale", "dl", "dam",
"dm", "div", "divide", "dv", "dvd", "dr", "driv", "drive", "drv",
"drives", "est", "estate", "estates", "ests", "exp", "expr",
"express", "expressway", "expw", "expy", "ext", "extension",
"extn", "extnsn", "exts", "fall", "falls", "fls", "ferry", "frry",
"fry", "field", "fld", "fields", "flds", "flat", "flt", "flats",
"flts", "ford", "frd", "fords", "forest", "forests", "frst",
"forg", "forge", "frg", "forges", "fork", "frk", "forks", "frks",
"fort", "frt", "ft", "freeway", "freewy", "frway", "frwy", "fwy",
"garden", "gardn", "grden", "grdn", "gardens", "gdns", "grdns",
"gateway", "gatewy", "gatway", "gtway", "gtwy", "glen", "gln",
"glens", "green", "grn", "greens", "grov", "grove", "grv", "groves",
"harb", "harbor", "harbr", "hbr", "hrbor", "harbors", "haven",
"hvn", "ht", "hts", "highway", "highwy", "hiway", "hiwy", "hway",
"hwy", "hill", "hl", "hills", "hls", "hllw", "hollow", "hollows",
"holw", "holws", "inlt", "is", "island", "islnd", "islands",
"islnds", "iss", "isle", "isles", "jct", "jction", "jctn", "junction",
"junctn", "juncton", "jctns", "jcts", "junctions", "key", "ky",
"keys", "kys", "knl", "knol", "knoll", "knls", "knolls", "lk",
"lake", "lks", "lakes", "land", "landing", "lndg", "lndng", "lane",
"ln", "lgt", "light", "lights", "lf", "loaf", "lck", "lock",
"lcks", "locks", "ldg", "ldge", "lodg", "lodge", "loop", "loops",
"mall", "mnr", "manor", "manors", "mnrs", "meadow", "mdw", "mdws",
"meadows", "medows", "mews", "mill", "mills", "missn", "mssn",
"motorway", "mnt", "mt", "mount", "mntain", "mntn", "mountain",
"mountin", "mtin", "mtn", "mntns", "mountains", "nck", "neck",
"orch", "orchard", "orchrd", "oval", "ovl", "overpass", "park",
"prk", "parks", "parkway", "parkwy", "pkway", "pkwy", "pky",
"parkways", "pkwys", "pass", "passage", "path", "paths", "pike",
"pikes", "pine", "pines", "pnes", "pl", "plain", "pln", "plains",
"plns", "plaza", "plz", "plza", "point", "pt", "points", "pts",
"port", "prt", "ports", "prts", "pr", "prairie", "prr", "rad",
"radial", "radiel", "radl", "ramp", "ranch", "ranches", "rnch",
"rnchs", "rapid", "rpd", "rapids", "rpds", "rest", "rst", "rdg",
"rdge", "ridge", "rdgs", "ridges", "riv", "river", "rvr", "rivr",
"rd", "road", "roads", "rds", "route", "row", "rue", "run", "shl",
"shoal", "shls", "shoals", "shoar", "shore", "shr", "shoars",
"shores", "shrs", "skyway", "spg", "spng", "spring", "sprng",
"spgs", "spngs", "springs", "sprngs", "spur", "spurs", "sq",
"sqr", "sqre", "squ", "square", "sqrs", "squares", "sta", "station",
"statn", "stn", "stra", "strav", "straven", "stravenue", "stravn",
"strvn", "strvnue", "stream", "streme", "strm", "street", "strt",
"st", "str", "streets", "smt", "suite", "sumit", "sumitt", "summit",
"ter", "terr", "terrace", "throughway", "trace", "traces", "trce",
"track", "tracks", "trak", "trk", "trks", "trafficway", "trail",
"trails", "trl", "trls", "trailer", "trlr", "trlrs", "tunel",
"tunl", "tunls", "tunnel", "tunnels", "tunnl", "trnpk", "turnpike",
"turnpk", "underpass", "un", "union", "unions", "valley", "vally",
"vlly", "vly", "valleys", "vlys", "vdct", "via", "viadct", "viaduct",
"view", "vw", "views", "vws", "vill", "villag", "village", "villg",
"villiage", "vlg", "villages", "vlgs", "ville", "vl", "vis",
"vist", "vista", "vst", "vsta", "walk", "walks", "wall", "wy",
"way", "ways", "well", "wells", "wls"), usps_abbrev = c("aly",
"aly", "aly", "aly", "anx", "anx", "anx", "anx", "arc", "arc",
"ave", "ave", "ave", "ave", "ave", "ave", "ave", "byu", "byu",
"bch", "bch", "bnd", "bnd", "blf", "blf", "blf", "blfs", "btm",
"btm", "btm", "btm", "blvd", "blvd", "blvd", "blvd", "br", "br",
"br", "brg", "brg", "brg", "brk", "brk", "brks", "bg", "bgs",
"byp", "byp", "byp", "byp", "byp", "cp", "cp", "cp", "cyn", "cyn",
"cyn", "cpe", "cpe", "cswy", "cswy", "cswy", "ctr", "ctr", "ctr",
"ctr", "ctr", "ctr", "ctr", "ctr", "ctrs", "cir", "cir", "cir",
"cir", "cir", "cir", "cirs", "clf", "clf", "clfs", "clfs", "clb",
"clb", "cmn", "cmns", "cor", "cor", "cors", "cors", "crse", "crse",
"ct", "ct", "cts", "cts", "cv", "cv", "cvs", "crk", "crk", "cres",
"cres", "cres", "cres", "crst", "xing", "xing", "xing", "xrd",
"xrds", "curv", "dl", "dl", "dm", "dm", "dv", "dv", "dv", "dv",
"dr", "dr", "dr", "dr", "drs", "est", "est", "ests", "ests",
"expy", "expy", "expy", "expy", "expy", "expy", "ext", "ext",
"ext", "ext", "exts", "fall", "fls", "fls", "fry", "fry", "fry",
"fld", "fld", "flds", "flds", "flt", "flt", "flts", "flts", "frd",
"frd", "frds", "frst", "frst", "frst", "frg", "frg", "frg", "frgs",
"frk", "frk", "frks", "frks", "ft", "ft", "ft", "fwy", "fwy",
"fwy", "fwy", "fwy", "gdn", "gdn", "gdn", "gdn", "gdns", "gdns",
"gdns", "gtwy", "gtwy", "gtwy", "gtwy", "gtwy", "gln", "gln",
"glns", "grn", "grn", "grns", "grv", "grv", "grv", "grvs", "hbr",
"hbr", "hbr", "hbr", "hbr", "hbrs", "hvn", "hvn", "hts", "hts",
"hwy", "hwy", "hwy", "hwy", "hwy", "hwy", "hl", "hl", "hls",
"hls", "holw", "holw", "holw", "holw", "holw", "inlt", "is",
"is", "is", "iss", "iss", "iss", "isle", "isle", "jct", "jct",
"jct", "jct", "jct", "jct", "jcts", "jcts", "jcts", "ky", "ky",
"kys", "kys", "knl", "knl", "knl", "knls", "knls", "lk", "lk",
"lks", "lks", "land", "lndg", "lndg", "lndg", "ln", "ln", "lgt",
"lgt", "lgts", "lf", "lf", "lck", "lck", "lcks", "lcks", "ldg",
"ldg", "ldg", "ldg", "loop", "loop", "mall", "mnr", "mnr", "mnrs",
"mnrs", "mdw", "mdws", "mdws", "mdws", "mdws", "mews", "ml",
"mls", "msn", "msn", "mtwy", "mt", "mt", "mt", "mtn", "mtn",
"mtn", "mtn", "mtn", "mtn", "mtns", "mtns", "nck", "nck", "orch",
"orch", "orch", "oval", "oval", "opas", "park", "park", "park",
"pkwy", "pkwy", "pkwy", "pkwy", "pkwy", "pkwy", "pkwy", "pass",
"psge", "path", "path", "pike", "pike", "pne", "pnes", "pnes",
"pl", "pln", "pln", "plns", "plns", "plz", "plz", "plz", "pt",
"pt", "pts", "pts", "prt", "prt", "prts", "prts", "pr", "pr",
"pr", "radl", "radl", "radl", "radl", "ramp", "rnch", "rnch",
"rnch", "rnch", "rpd", "rpd", "rpds", "rpds", "rst", "rst", "rdg",
"rdg", "rdg", "rdgs", "rdgs", "riv", "riv", "riv", "riv", "rd",
"rd", "rds", "rds", "rte", "row", "rue", "run", "shl", "shl",
"shls", "shls", "shr", "shr", "shr", "shrs", "shrs", "shrs",
"skwy", "spg", "spg", "spg", "spg", "spgs", "spgs", "spgs", "spgs",
"spur", "spur", "sq", "sq", "sq", "sq", "sq", "sqs", "sqs", "sta",
"sta", "sta", "sta", "stra", "stra", "stra", "stra", "stra",
"stra", "stra", "strm", "strm", "strm", "st", "st", "st", "st",
"sts", "smt", "ste", "smt", "smt", "smt", "ter", "ter", "ter",
"trwy", "trce", "trce", "trce", "trak", "trak", "trak", "trak",
"trak", "trfy", "trl", "trl", "trl", "trl", "trlr", "trlr", "trlr",
"tunl", "tunl", "tunl", "tunl", "tunl", "tunl", "tpke", "tpke",
"tpke", "upas", "un", "un", "uns", "vly", "vly", "vly", "vly",
"vlys", "vlys", "via", "via", "via", "via", "vw", "vw", "vws",
"vws", "vlg", "vlg", "vlg", "vlg", "vlg", "vlg", "vlgs", "vlgs",
"vl", "vl", "vis", "vis", "vis", "vis", "vis", "walk", "walk",
"wall", "way", "way", "ways", "wl", "wls", "wls")), class = "data.frame", row.names = c(NA,
-503L))
Run Code Online (Sandbox Code Playgroud)
我想用它们来处理街道地址和州。玩具数据:
a <- c("10900 harper ave", "12235 davis annex", "24 van cortland parkway")
Run Code Online (Sandbox Code Playgroud)
为了将常见缩写转换为 usps 缩写(标准化数据),我构建了一个小函数:
mr_zip <- function(x){
x <-textclean::mgsub(usps_streets$common_abbrev, usps_streets$usps_abbrev, x, fixed = T,
order.pattern = T)
return(x)
}
Run Code Online (Sandbox Code Playgroud)
当我将函数应用于数据时,问题就出现了:
f <- sapply(a, mr_zip)
Run Code Online (Sandbox Code Playgroud)
我得到错误的结果:
"10900 harper avee" "1235 davis anx" "24 van cortland pkway"
Run Code Online (Sandbox Code Playgroud)
因为我应该得到的是:
"10900 harper ave" "1235 davis anx" "24 van cortland pkwy"
Run Code Online (Sandbox Code Playgroud)
我的问题:
order.pattern = Tand时会发生这种情况?fixed = Tmgsub预先感谢,欢迎所有建议。
编辑:感谢@RichieSacramento,我发现使用单词边界确实有帮助,但在大型数据帧(> 400,000 行)上使用时该函数仍然非常慢。使用safe = TRUEinmgsub可以使函数正常工作,但速度非常慢。人们需要快速的东西——因此有赏金。
那么让我们开始享受乐趣吧。
步骤 1
首先,我们将您的数据加载到tibble命名的USPS.
library(tidyverse)
USPS = tibble(
common_abbrev = c("allee", "alley", "ally", "aly",
"anex", "annex", "annx", "anx", "arc", "arcade", "av", "ave",
"aven", "avenu", "avenue", "avn", "avnue", "bayoo", "bayou",
"bch", "beach", "bend", "bnd", "blf", "bluf", "bluff", "bluffs",
"bot", "btm", "bottm", "bottom", "blvd", "boul", "boulevard",
"boulv", "br", "brnch", "branch", "brdge", "brg", "bridge", "brk",
"brook", "brooks", "burg", "burgs", "byp", "bypa", "bypas", "bypass",
"byps", "camp", "cp", "cmp", "canyn", "canyon", "cnyn", "cape",
"cpe", "causeway", "causwa", "cswy", "cen", "cent", "center",
"centr", "centre", "cnter", "cntr", "ctr", "centers", "cir",
"circ", "circl", "circle", "crcl", "crcle", "circles", "clf",
"cliff", "clfs", "cliffs", "clb", "club", "common", "commons",
"cor", "corner", "corners", "cors", "course", "crse", "court",
"ct", "courts", "cts", "cove", "cv", "coves", "creek", "crk",
"crescent", "cres", "crsent", "crsnt", "crest", "crossing", "crssng",
"xing", "crossroad", "crossroads", "curve", "dale", "dl", "dam",
"dm", "div", "divide", "dv", "dvd", "dr", "driv", "drive", "drv",
"drives", "est", "estate", "estates", "ests", "exp", "expr",
"express", "expressway", "expw", "expy", "ext", "extension",
"extn", "extnsn", "exts", "fall", "falls", "fls", "ferry", "frry",
"fry", "field", "fld", "fields", "flds", "flat", "flt", "flats",
"flts", "ford", "frd", "fords", "forest", "forests", "frst",
"forg", "forge", "frg", "forges", "fork", "frk", "forks", "frks",
"fort", "frt", "ft", "freeway", "freewy", "frway", "frwy", "fwy",
"garden", "gardn", "grden", "grdn", "gardens", "gdns", "grdns",
"gateway", "gatewy", "gatway", "gtway", "gtwy", "glen", "gln",
"glens", "green", "grn", "greens", "grov", "grove", "grv", "groves",
"harb", "harbor", "harbr", "hbr", "hrbor", "harbors", "haven",
"hvn", "ht", "hts", "highway", "highwy", "hiway", "hiwy", "hway",
"hwy", "hill", "hl", "hills", "hls", "hllw", "hollow", "hollows",
"holw", "holws", "inlt", "is", "island", "islnd", "islands",
"islnds", "iss", "isle", "isles", "jct", "jction", "jctn", "junction",
"junctn", "juncton", "jctns", "jcts", "junctions", "key", "ky",
"keys", "kys", "knl", "knol", "knoll", "knls", "knolls", "lk",
"lake", "lks", "lakes", "land", "landing", "lndg", "lndng", "lane",
"ln", "lgt", "light", "lights", "lf", "loaf", "lck", "lock",
"lcks", "locks", "ldg", "ldge", "lodg", "lodge", "loop", "loops",
"mall", "mnr", "manor", "manors", "mnrs", "meadow", "mdw", "mdws",
"meadows", "medows", "mews", "mill", "mills", "missn", "mssn",
"motorway", "mnt", "mt", "mount", "mntain", "mntn", "mountain",
"mountin", "mtin", "mtn", "mntns", "mountains", "nck", "neck",
"orch", "orchard", "orchrd", "oval", "ovl", "overpass", "park",
"prk", "parks", "parkway", "parkwy", "pkway", "pkwy", "pky",
"parkways", "pkwys", "pass", "passage", "path", "paths", "pike",
"pikes", "pine", "pines", "pnes", "pl", "plain", "pln", "plains",
"plns", "plaza", "plz", "plza", "point", "pt", "points", "pts",
"port", "prt", "ports", "prts", "pr", "prairie", "prr", "rad",
"radial", "radiel", "radl", "ramp", "ranch", "ranches", "rnch",
"rnchs", "rapid", "rpd", "rapids", "rpds", "rest", "rst", "rdg",
"rdge", "ridge", "rdgs", "ridges", "riv", "river", "rvr", "rivr",
"rd", "road", "roads", "rds", "route", "row", "rue", "run", "shl",
"shoal", "shls", "shoals", "shoar", "shore", "shr", "shoars",
"shores", "shrs", "skyway", "spg", "spng", "spring", "sprng",
"spgs", "spngs", "springs", "sprngs", "spur", "spurs", "sq",
"sqr", "sqre", "squ", "square", "sqrs", "squares", "sta", "station",
"statn", "stn", "stra", "strav", "straven", "stravenue", "stravn",
"strvn", "strvnue", "stream", "streme", "strm", "street", "strt",
"st", "str", "streets", "smt", "suite", "sumit", "sumitt", "summit",
"ter", "terr", "terrace", "throughway", "trace", "traces", "trce",
"track", "tracks", "trak", "trk", "trks", "trafficway", "trail",
"trails", "trl", "trls", "trailer", "trlr", "trlrs", "tunel",
"tunl", "tunls", "tunnel", "tunnels", "tunnl", "trnpk", "turnpike",
"turnpk", "underpass", "un", "union", "unions", "valley", "vally",
"vlly", "vly", "valleys", "vlys", "vdct", "via", "viadct", "viaduct",
"view", "vw", "views", "vws", "vill", "villag", "village", "villg",
"villiage", "vlg", "villages", "vlgs", "ville", "vl", "vis",
"vist", "vista", "vst", "vsta", "walk", "walks", "wall", "wy",
"way", "ways", "well", "wells", "wls"),
usps_abbrev = c("aly",
"aly", "aly", "aly", "anx", "anx", "anx", "anx", "arc", "arc",
"ave", "ave", "ave", "ave", "ave", "ave", "ave", "byu", "byu",
"bch", "bch", "bnd", "bnd", "blf", "blf", "blf", "blfs", "btm",
"btm", "btm", "btm", "blvd", "blvd", "blvd", "blvd", "br", "br",
"br", "brg", "brg", "brg", "brk", "brk", "brks", "bg", "bgs",
"byp", "byp", "byp", "byp", "byp", "cp", "cp", "cp", "cyn", "cyn",
"cyn", "cpe", "cpe", "cswy", "cswy", "cswy", "ctr", "ctr", "ctr",
"ctr", "ctr", "ctr", "ctr", "ctr", "ctrs", "cir", "cir", "cir",
"cir", "cir", "cir", "cirs", "clf", "clf", "clfs", "clfs", "clb",
"clb", "cmn", "cmns", "cor", "cor", "cors", "cors", "crse", "crse",
"ct", "ct", "cts", "cts", "cv", "cv", "cvs", "crk", "crk", "cres",
"cres", "cres", "cres", "crst", "xing", "xing", "xing", "xrd",
"xrds", "curv", "dl", "dl", "dm", "dm", "dv", "dv", "dv", "dv",
"dr", "dr", "dr", "dr", "drs", "est", "est", "ests", "ests",
"expy", "expy", "expy", "expy", "expy", "expy", "ext", "ext",
"ext", "ext", "exts", "fall", "fls", "fls", "fry", "fry", "fry",
"fld", "fld", "flds", "flds", "flt", "flt", "flts", "flts", "frd",
"frd", "frds", "frst", "frst", "frst", "frg", "frg", "frg", "frgs",
"frk", "frk", "frks", "frks", "ft", "ft", "ft", "fwy", "fwy",
"fwy", "fwy", "fwy", "gdn", "gdn", "gdn", "gdn", "gdns", "gdns",
"gdns", "gtwy", "gtwy", "gtwy", "gtwy", "gtwy", "gln", "gln",
"glns", "grn", "grn", "grns", "grv", "grv", "grv", "grvs", "hbr",
"hbr", "hbr", "hbr", "hbr", "hbrs", "hvn", "hvn", "hts", "hts",
"hwy", "hwy", "hwy", "hwy", "hwy", "hwy", "hl", "hl", "hls",
"hls", "holw", "holw", "holw", "holw", "holw", "inlt", "is",
"is", "is", "iss", "iss", "iss", "isle", "isle", "jct", "jct",
"jct", "jct", "jct", "jct", "jcts", "jcts", "jcts", "ky", "ky",
"kys", "kys", "knl", "knl", "knl", "knls", "knls", "lk", "lk",
"lks", "lks", "land", "lndg", "lndg", "lndg", "ln", "ln", "lgt",
"lgt", "lgts", "lf", "lf", "lck", "lck", "lcks", "lcks", "ldg",
"ldg", "ldg", "ldg", "loop", "loop", "mall", "mnr", "mnr", "mnrs",
"mnrs", "mdw", "mdws", "mdws", "mdws", "mdws", "mews", "ml",
"mls", "msn", "msn", "mtwy", "mt", "mt", "mt", "mtn", "mtn",
"mtn", "mtn", "mtn", "mtn", "mtns", "mtns", "nck", "nck", "orch",
"orch", "orch", "oval", "oval", "opas", "park", "park", "park",
"pkwy", "pkwy", "pkwy", "pkwy", "pkwy", "pkwy", "pkwy", "pass",
"psge", "path", "path", "pike", "pike", "pne", "pnes", "pnes",
"pl", "pln", "pln", "plns", "plns", "plz", "plz", "plz", "pt",
"pt", "pts", "pts", "prt", "prt", "prts", "prts", "pr", "pr",
"pr", "radl", "radl", "radl", "radl", "ramp", "rnch", "rnch",
"rnch", "rnch", "rpd", "rpd", "rpds", "rpds", "rst", "rst", "rdg",
"rdg", "rdg", "rdgs", "rdgs", "riv", "riv", "riv", "riv", "rd",
"rd", "rds", "rds", "rte", "row", "rue", "run", "shl", "shl",
"shls", "shls", "shr", "shr", "shr", "shrs", "shrs", "shrs",
"skwy", "spg", "spg", "spg", "spg", "spgs", "spgs", "spgs", "spgs",
"spur", "spur", "sq", "sq", "sq", "sq", "sq", "sqs", "sqs", "sta",
"sta", "sta", "sta", "stra", "stra", "stra", "stra", "stra",
"stra", "stra", "strm", "strm", "strm", "st", "st", "st", "st",
"sts", "smt", "ste", "smt", "smt", "smt", "ter", "ter", "ter",
"trwy", "trce", "trce", "trce", "trak", "trak", "trak", "trak",
"trak", "trfy", "trl", "trl", "trl", "trl", "trlr", "trlr", "trlr",
"tunl", "tunl", "tunl", "tunl", "tunl", "tunl", "tpke", "tpke",
"tpke", "upas", "un", "un", "uns", "vly", "vly", "vly", "vly",
"vlys", "vlys", "via", "via", "via", "via", "vw", "vw", "vws",
"vws", "vlg", "vlg", "vlg", "vlg", "vlg", "vlg", "vlgs", "vlgs",
"vl", "vl", "vis", "vis", "vis", "vis", "vis", "walk", "walk",
"wall", "way", "way", "ways", "wl", "wls", "wls"))
USPS
Run Code Online (Sandbox Code Playgroud)
输出
# A tibble: 503 x 2
common_abbrev usps_abbrev
<chr> <chr>
1 allee aly
2 alley aly
3 ally aly
4 aly aly
5 anex anx
6 annex anx
7 annx anx
8 anx anx
9 arc arc
10 arcade arc
# ... with 493 more rows
Run Code Online (Sandbox Code Playgroud)
步骤 2
现在我们将把你的USPS表转换成一个带有命名元素的向量。
USPSv = array(data = USPS$usps_abbrev,
dimnames= list(USPS$common_abbrev))
Run Code Online (Sandbox Code Playgroud)
让我们看看它给我们带来了什么
USPSv['viadct']
# viadct
# "via"
USPSv['coves']
# coves
# "cvs"
Run Code Online (Sandbox Code Playgroud)
看起来很诱人。
步骤 3
现在让我们创建一个转换(向量化)函数,该函数将USPSv向量与命名元素一起使用。
USPS_conv = function(x) {
comm = str_split(x, " ") %>% .[[1]] %>% .[length(.)]
str_replace(x, comm, USPSv[comm])
}
USPS_conv = Vectorize(USPS_conv)
Run Code Online (Sandbox Code Playgroud)
让我们看看我们的USPS_conv工作方式。
USPS_conv("10900 harper coves")
# 10900 harper coves
# "10900 harper cvs"
USPS_conv("10900 harper viadct")
# 10900 harper viadct
# "10900 harper via"
Run Code Online (Sandbox Code Playgroud)
很好,但是它能处理向量吗?
USPS_conv(c("10900 harper coves", "10900 harper viadct", "10900 harper ave"))
# 10900 harper coves 10900 harper viadct 10900 harper ave
# "10900 harper cvs" "10900 harper via" "10900 harper ave"
Run Code Online (Sandbox Code Playgroud)
到目前为止一切都很顺利。
第四步
现在是时候USPS_conv在函数中使用我们的函数了mutate。但是,我们需要一些输入数据。我们将自己生成它们。
n=10
set.seed(1111)
df = tibble(
addresses = paste(
sample(10:10000, n, replace = TRUE),
sample(c("harper", "davis", "van cortland", "marry", "von brown"), n, replace = TRUE),
sample(USPS$common_abbrev, n, replace = TRUE)
)
)
df
Run Code Online (Sandbox Code Playgroud)
输出
# A tibble: 10 x 1
addresses
<chr>
1 8995 davis crk
2 8527 davis tunnl
3 7663 von brown wall
4 3043 harper lake
5 9192 von brown grdn
6 120 marry rvr
7 72 von brown locks
8 8752 marry gardn
9 7754 davis corner
10 3745 davis jcts
Run Code Online (Sandbox Code Playgroud)
让我们执行一个突变
df %>% mutate(addresses = USPS_conv(addresses))
Run Code Online (Sandbox Code Playgroud)
输出
# A tibble: 10 x 1
addresses
<chr>
1 8995 davis crk
2 8527 davis tunl
3 7663 von brown wall
4 3043 harper lk
5 9192 von brown gdn
6 120 marry riv
7 72 von brown lcks
8 8752 marry gdn
9 7754 davis cor
10 3745 davis jcts
Run Code Online (Sandbox Code Playgroud)
看起来还好吗?好像是最多的。
第 5 步 现在是时候对 1,000,000 个地址进行一次伟大的测试了!我们将像以前一样生成数据。
n=1000000
set.seed(1111)
df = tibble(
addresses = paste(
sample(10:10000, n, replace = TRUE),
sample(c("harper", "davis", "van cortland", "marry", "von brown"), n, replace = TRUE),
sample(USPS$common_abbrev, n, replace = TRUE)
)
)
df
Run Code Online (Sandbox Code Playgroud)
输出
# A tibble: 1,000,000 x 1
addresses
<chr>
1 8995 marry pass
2 8527 davis spng
3 7663 marry loaf
4 3043 davis common
5 9192 marry bnd
6 120 von brown corner
7 72 van cortland plains
8 8752 van cortland crcle
9 7754 von brown sqrs
10 3745 marry key
# ... with 999,990 more rows
Run Code Online (Sandbox Code Playgroud)
那么我们走吧。但让我们立即衡量一下需要多长时间。
start_time =Sys.time()
df %>% mutate(addresses = USPS_conv(addresses))
Sys.time()-start_time
#Time difference of 3.610211 mins
Run Code Online (Sandbox Code Playgroud)
正如你所看到的,我只花了不到 4 分钟。我不知道你是否期待更快的事情,以及你对这次是否满意。我会等待你的评论。
最后一刻更新
事实证明,USPS_conv如果我们稍微改变一下它的代码,就可以稍微加快速度。
USPS_conv2 = function(x) {
t = str_split(x, " ")
comm = t[[1]][length(t[[1]])]
str_replace(x, comm, USPSv[comm])
}
USPS_conv2 = Vectorize(USPS_conv2)
Run Code Online (Sandbox Code Playgroud)
新USPS_conv2功能的运行速度稍快一些。
所有这些意味着一百万条记录的突变时间减少到 3.3 分钟。
我意识到我的第一个版本的答案虽然结构简单,但有点慢:-(。所以我决定想出更快的东西。我将在这里分享我的想法,但请注意,一些解决方案会有点“神奇”。
为了加快操作速度,我们需要创建一个字典,将键快速转换为值。我们将使用 R 中的环境来创建它。
这是我们词典的一个小界面。
#Simple Dictionary (hash Table) Interface for R
ht.create = function() new.env()
ht.insert = function(ht, key, value) ht[[key]] <- value
ht.insert = Vectorize(ht.insert, c("key", "value"))
ht.lookup = function(ht, key) ht[[key]]
ht.lookup = Vectorize(ht.lookup, "key")
ht.delete = function(ht, key) rm(list=key,envir=ht,inherits=FALSE)
ht.delete = Vectorize(ht.delete, "key")
Run Code Online (Sandbox Code Playgroud)
这是怎么发生的。我已经展示了。下面我将创建一个新的字典环境,ht.create()向其中添加两个元素“a1”和“a2”,ht.insert分别具有值“va1”和“va2”。最后,我将询问我的环境字典这些键的值ht.lookup。
ht1 = ht.create()
ht.insert(ht1, "a1", "va1" )
ht1 %>% ht.insert("a2", "va2")
ht.lookup(ht1, "a1")
# a1
# "va1"
ht1 %>% ht.lookup("a2")
# a2
# "va2"
Run Code Online (Sandbox Code Playgroud)
请注意,函数ht.insert和 ht.lookup是向量化的,这意味着我将能够将整个向量添加到字典中。以同样的方式,我将能够通过给出整个向量来查询我的字典。
ht.insert(ht1, paste0("a", 1:10),paste0("va", 1:10))
ht1 %>% ht.insert( paste0("a", 11:20),paste0("va", 11:20))
ht.lookup(ht1, paste0("a", 10:1))
# a10 a9 a8 a7 a6 a5 a4 a3 a2 a1
# "va10" "va9" "va8" "va7" "va6" "va5" "va4" "va3" "va2" "va1"
ht1 %>% ht.lookup(paste0("a", 20:11))
# a20 a19 a18 a17 a16 a15 a14 a13 a12 a11
# "va20" "va19" "va18" "va17" "va16" "va15" "va14" "va13" "va12" "va11"
Run Code Online (Sandbox Code Playgroud)
现在我们将执行一个函数,将附加属性添加到选定的字典环境表中。
#Functions that add a dictionary attribute to tibble
addHashTable = function(.data, key, value){
key = enquo(key)
value = enquo(value)
if (!all(c(as_label(key), as_label(value)) %in% names(.data))) {
stop(paste0("`.data` must contain `", as_label(key),
"` and `", as_label(value), "` columns"))
}
if((.data %>% distinct(!!key, !!value) %>% nrow)!=
(.data %>% distinct(!!key) %>% nrow)){
warning(paste0(
"\nThe number of unique values of the ", as_label(key),
" variable is different\n",
" from the number of unique values of the ",
as_label(key), " and ", as_label(value)," pairs!\n",
"The dictionary will only return the last values for a given key!"))
}
ht = ht.create()
ht %>% ht.insert(.data %>% distinct(!!key, !!value) %>% pull(!!key),
.data %>% distinct(!!key, !!value) %>% pull(!!value))
attr(.data, "hashTab") = ht
.data
}
addHashTable2 = function(.x, .y, key, value){
key = enquo(key)
value = enquo(value)
if (!all(c(as_label(key), as_label(value)) %in% names(.y))) {
stop(paste0("`.y` must contain `", as_label(key),
"` and `", as_label(value), "` columns"))
}
if((.y %>% distinct(!!key, !!value) %>% nrow)!=
(.y %>% distinct(!!key) %>% nrow)){
warning(paste0(
"\nThe number of unique values of the ", as_label(key),
" variable is different\n",
" from the number of unique values of the ",
as_label(key), " and ", as_label(value)," pairs!\n",
"The dictionary will only return the last values for a given key!"))
}
ht = ht.create()
ht %>% ht.insert(.y %>% distinct(!!key, !!value) %>% pull(!!key),
.y %>% distinct(!!key, !!value) %>% pull(!!value))
attr(.x, "hashTab") = ht
.x
}
Run Code Online (Sandbox Code Playgroud)
实际上有两个功能。该addHashTable函数将字典环境属性添加到从中获取键值对的同一个表中。该addHashTable2函数同样添加到字典环境表中,但从另一个表中检索密钥对。
让我们看看如何addHashTable运作。
USPS = USPS %>% addHashTable(common_abbrev, usps_abbrev)
str(USPS)
# tibble [503 x 2] (S3: tbl_df/tbl/data.frame)
# $ common_abbrev: chr [1:503] "allee" "alley" "ally" "aly" ...
# $ usps_abbrev : chr [1:503] "aly" "aly" "aly" "aly" ...
# - attr(*, "hashTab")=<environment: 0x000000001591bbf0>
Run Code Online (Sandbox Code Playgroud)
正如您所看到的,表中添加了一个USPS指向0x000000001591bbf0环境的属性。
我们需要创建一个函数,该函数将使用以这种方式添加的字典环境来替换(在本例中)指示变量中的最后一个单词与字典中的相应值。这里是。
replaceString = function(.data, value){
value = enquo(value)
#Test whether the value variable is in .data
if(!(as_label(value) %in% names(.data))){
stop(paste("The", as_label(value),
"variable does not exist in the .data table!"))
}
#Dictionary attribute presence test
if(!("hashTab" %in% names(attributes(.data)))) {
stop(paste0(
"\nThere is no dictionary attribute in the .data table!\n",
"Use addHashTable or addHashTable2 to add a dictionary attribute."))
}
txt = .data %>% pull(!!value)
i = sapply(strsplit(txt, ""), function(x) max(which(x==" ")))
txt = paste0(str_sub(txt, end=i),
ht.lookup(attr(.data, "hashTab"),
str_sub(txt, start=i+1)))
.data %>% mutate(!!value := txt)
}
Run Code Online (Sandbox Code Playgroud)
到了第一篇文字的时间了。为了避免复制代码,我添加了一个小函数,该函数返回一个包含随机选择地址的表。
randomAddresses = function(n){
tibble(
addresses = paste(
sample(10:10000, n, replace = TRUE),
sample(c("harper", "davis", "van cortland", "marry", "von brown"), n, replace = TRUE),
sample(USPS$common_abbrev, n, replace = TRUE)
)
)
}
set.seed(1111)
df = randomAddresses(10)
df
# # A tibble: 10 x 1
# addresses
# <chr>
# 1 74 marry forges
# 2 787 von brown knol
# 3 2755 van cortland summit
# 4 9405 harper plaza
# 5 5376 marry pass
# 6 1857 marry trailer
# 7 9810 von brown drv
# 8 7984 davis garden
# 9 9110 marry alley
# 10 6458 von brown row
Run Code Online (Sandbox Code Playgroud)
是时候使用我们的魔术文本替换功能了。但是,请记住首先将字典环境添加到表中。
df = df %>% addHashTable2(USPS, common_abbrev, usps_abbrev)
df %>% replaceString(addresses)
# A tibble: 10 x 1
# addresses
# <chr>
# 1 74 marry frgs
# 2 787 von brown knl
# 3 2755 van cortland smt
# 4 9405 harper plz
# 5 5376 marry pass
# 6 1857 marry trlr
# 7 9810 von brown dr
# 8 7984 davis gdn
# 9 9110 marry aly
# 10 6458 von brown row
Run Code Online (Sandbox Code Playgroud)
看起来确实有效!
好吧,没有什么可等待的。现在让我们在一个有一百万行的表上尝试一下。让我们立即测量一下绘制地址和添加字典环境需要多长时间。
start_time =Sys.time()
df = randomAddresses(1000000)
df = df %>% addHashTable2(USPS, common_abbrev, usps_abbrev)
Sys.time()-start_time
#Time difference of 1.56609 secs
Run Code Online (Sandbox Code Playgroud)
输出
df
# A tibble: 1,000,000 x 1
# addresses
# <chr>
# 1 8995 marry pass
# 2 8527 davis spng
# 3 7663 marry loaf
# 4 3043 davis common
# 5 9192 marry bnd
# 6 120 von brown corner
# 7 72 van cortland plains
# 8 8752 van cortland crcle
# 9 7754 von brown sqrs
# 10 3745 marry key
# # ... with 999,990 more rows
Run Code Online (Sandbox Code Playgroud)
1.6秒可能并不算太多。然而,最大的问题是更换缩写需要多长时间。
start_time =Sys.time()
df = df %>% replaceString(addresses)
Sys.time()-start_time
#Time difference of 8.316476 secs
Run Code Online (Sandbox Code Playgroud)
输出
# A tibble: 1,000,000 x 1
# addresses
# <chr>
# 1 8995 marry pass
# 2 8527 davis spg
# 3 7663 marry lf
# 4 3043 davis cmn
# 5 9192 marry bnd
# 6 120 von brown cor
# 7 72 van cortland plns
# 8 8752 van cortland cir
# 9 7754 von brown sqs
# 10 3745 marry ky
# # ... with 99
这是现有OP问题的基准测试(从@Marek Fio\xc5\x82ka借用测试数据,但带有n <- 10000)
> mb1\nUnit: milliseconds\n expr min lq mean median\n f_MK_conv2(df$addresses) 1409.0643 1470.3992 1612.09037 1631.3014\n f_MK_replaceString(df, addresses) 50.1582 54.3035 94.53149 62.5772\n f_TIC1(df$addresses) 394.5972 420.3283 461.50675 447.6186\n f_TIC2(df$addresses) 1579.1868 1852.6873 2052.28388 1964.8845\n f_TIC3(df$addresses) 65.8436 71.5448 93.36210 84.9698\n uq max neval\n 1710.3459 1898.6773 20\n 116.3108 264.2616 20\n 499.4052 626.9240 20\n 2246.5562 2916.2253 20\n 102.7689 183.5121 20\nRun Code Online (Sandbox Code Playgroud)\n\n其中基准代码给出如下
\nf_MK_conv2 <- function(x) {\n USPSv <- array(\n data = USPS$usps_abbrev,\n dimnames = list(USPS$common_abbrev)\n )\n USPS_conv2 <- function(x) {\n t <- str_split(x, " ")\n comm <- t[[1]][length(t[[1]])]\n str_replace(x, comm, USPSv[comm])\n }\n Vectorize(USPS_conv2)(x)\n}\n\nf_MK_replaceString <- function(.data, value) {\n ht.create <- function() new.env()\n\n ht.insert <- function(ht, key, value) ht[[key]] <- value\n ht.insert <- Vectorize(ht.insert, c("key", "value"))\n\n ht.lookup <- function(ht, key) ht[[key]]\n ht.lookup <- Vectorize(ht.lookup, "key")\n\n ht.delete <- function(ht, key) rm(list = key, envir = ht, inherits = FALSE)\n ht.delete <- Vectorize(ht.delete, "key")\n\n addHashTable2 <- function(.x, .y, key, value) {\n key <- enquo(key)\n value <- enquo(value)\n\n if (!all(c(as_label(key), as_label(value)) %in% names(.y))) {\n stop(paste0(\n "`.y` must contain `", as_label(key),\n "` and `", as_label(value), "` columns"\n ))\n }\n\n if ((.y %>% distinct(!!key, !!value) %>% nrow()) !=\n (.y %>% distinct(!!key) %>% nrow())) {\n warning(paste0(\n "\\nThe number of unique values of the ", as_label(key),\n " variable is different\\n",\n " from the number of unique values of the ",\n as_label(key), " and ", as_label(value), " pairs!\\n",\n "The dictionary will only return the last values for a given key!"\n ))\n }\n\n ht <- ht.create()\n ht %>% ht.insert(\n .y %>% distinct(!!key, !!value) %>% pull(!!key),\n .y %>% distinct(!!key, !!value) %>% pull(!!value)\n )\n attr(.x, "hashTab") <- ht\n .x\n }\n\n .data <- .data %>% addHashTable2(USPS, common_abbrev, usps_abbrev)\n\n value <- enquo(value)\n # Test whether the value variable is in .data\n if (!(as_label(value) %in% names(.data))) {\n stop(paste(\n "The", as_label(value),\n "variable does not exist in the .data table!"\n ))\n }\n\n # Dictionary attribute presence test\n if (!("hashTab" %in% names(attributes(.data)))) {\n stop(paste0(\n "\\nThere is no dictionary attribute in the .data table!\\n",\n "Use addHashTable or addHashTable2 to add a dictionary attribute."\n ))\n }\n\n txt <- .data %>% pull(!!value)\n i <- sapply(strsplit(txt, ""), function(x) max(which(x == " ")))\n txt <- paste0(\n str_sub(txt, end = i),\n ht.lookup(\n attr(.data, "hashTab"),\n str_sub(txt, start = i + 1)\n )\n )\n .data %>% mutate(!!value := txt)\n}\n\nf_TIC1 <- function(x) {\n sapply(\n strsplit(x, " "),\n function(x) {\n with(USPS, {\n idx <- match(x, common_abbrev)\n paste0(ifelse(is.na(idx), x, usps_abbrev[idx]),\n collapse = " "\n )\n })\n }\n )\n}\n\nf_TIC2 <- function(x) {\n res <- c()\n for (s in x) {\n v <- unlist(strsplit(s, "\\\\W+"))\n for (p in v) {\n k <- match(p, USPS$common_abbrev)\n if (!is.na(k)) {\n s <- with(\n USPS,\n gsub(\n sprintf("\\\\b%s\\\\b", common_abbrev[k]),\n usps_abbrev[k],\n s\n )\n )\n }\n }\n res <- append(res, s)\n }\n res\n}\n\nf_TIC3 <- function(x) {\n x.split <- strsplit(x, " ")\n lut <- with(USPS, setNames(usps_abbrev, common_abbrev))\n grp <- rep(seq_along(x.split), lengths(x.split))\n xx <- unlist(x.split)\n r <- lut[xx]\n tapply(\n replace(xx, !is.na(r), na.omit(r)),\n grp,\n function(s) paste0(s, collapse = " ")\n )\n}\n\nf_TIC4 <- function(x) {\n xb <- gsub("^.*\\\\s+", "", x)\n rp <- with(USPS, usps_abbrev[match(xb, common_abbrev)])\n paste0(gsub("\\\\w+$", "", x), replace(xb, !is.na(rp), na.omit(rp)))\n}\n\nf_JM <- function(x) {\n x$abbreviation <- gsub("^.* ", "", x$addresses)\n setDT(x)\n setDT(USPS)\n x[USPS, abbreviation := usps_abbrev, on = .(abbreviation = common_abbrev)]\n\n x$usps_abbreviation <- paste(str_extract(x$addresses, "^.* "), x$abbreviation, sep = "")\n}\n\nset.seed(1111)\ndf <- randomAddresses(10000)\n\nlibrary(microbenchmark)\nmb1 <- microbenchmark(\n f_MK_conv2(df$addresses),\n f_MK_replaceString(df, addresses),\n f_JM(df),\n f_TIC1(df$addresses),\n f_TIC2(df$addresses),\n f_TIC3(df$addresses),\n f_TIC4(df$addresses),\n times = 20L\n)\nggplot2::autoplot(mb1)\nRun Code Online (Sandbox Code Playgroud)\n也许以下基本 R 选项之一可以提供帮助
\nf_TIC1 <- function(x) {\n sapply(\n strsplit(x, " "),\n function(x) {\n with(USPS, {\n idx <- match(x, common_abbrev)\n paste0(ifelse(is.na(idx), x, usps_abbrev[idx]),\n collapse = " "\n )\n })\n }\n )\n}\nRun Code Online (Sandbox Code Playgroud)\n\nf_TIC2 <- function(x) {\n res <- c()\n for (s in x) {\n v <- unlist(strsplit(s, "\\\\W+"))\n for (p in v) {\n k <- match(p, USPS$common_abbrev)\n if (!is.na(k)) {\n s <- with(\n USPS,\n gsub(\n sprintf("\\\\b%s\\\\b", common_abbrev[k]),\n usps_abbrev[k],\n s\n )\n )\n }\n }\n res <- append(res, s)\n }\n res\n}\nRun Code Online (Sandbox Code Playgroud)\n\nf_TIC3 <- function(x) {\n x.split <- strsplit(x, " ")\n lut <- with(USPS, setNames(usps_abbrev, common_abbrev))\n grp <- rep(seq_along(x.split), lengths(x.split))\n xx <- unlist(x.split)\n r <- lut[xx]\n tapply(\n replace(xx, !is.na(r), na.omit(r)),\n grp,\n function(s) paste0(s, collapse = " ")\n )\n}\nRun Code Online (Sandbox Code Playgroud)\nf_TIC4 <- function(x) {\n xb <- gsub("^.*\\\\s+", "", x)\n rp <- with(USPS, usps_abbrev[match(xb, common_abbrev)])\n paste0(gsub("\\\\w+$", "", x), replace(xb, !is.na(rp), na.omit(rp)))\n}\nRun Code Online (Sandbox Code Playgroud)\n[1] "10900 harper ave" "12235 davis anx" "24 van cortland pkwy"\nRun Code Online (Sandbox Code Playgroud)\n
我花了一些时间调整我现有的答案(如下),我相信这是最快的方法。另外,值得注意的是,如果您添加perl = TRUE到 f_JM 和 TIC4 中的 gsub,则此示例的速度会显着提高(可能不适用于“现实世界”数据)。我的答案还有一个重要的警告,因为它是基于缩写术语是地址中的最后一个术语(例如 TIC1、TIC2 和 TIC3 不依赖于该假设)。
非常感谢@Marek 和@TIC 的基准测试代码和建设性意见:
\n## Benchmarking with updated f_JM() and TIC4()\nlibrary(data.table)\nlibrary(tidyverse)\n\nUSPS = tibble(\n common_abbrev = c("allee", "alley", "ally", "aly",\n "anex", "annex", "annx", "anx", "arc", "arcade", "av", "ave",\n "aven", "avenu", "avenue", "avn", "avnue", "bayoo", "bayou",\n "bch", "beach", "bend", "bnd", "blf", "bluf", "bluff", "bluffs",\n "bot", "btm", "bottm", "bottom", "blvd", "boul", "boulevard",\n "boulv", "br", "brnch", "branch", "brdge", "brg", "bridge", "brk",\n "brook", "brooks", "burg", "burgs", "byp", "bypa", "bypas", "bypass",\n "byps", "camp", "cp", "cmp", "canyn", "canyon", "cnyn", "cape",\n "cpe", "causeway", "causwa", "cswy", "cen", "cent", "center",\n "centr", "centre", "cnter", "cntr", "ctr", "centers", "cir",\n "circ", "circl", "circle", "crcl", "crcle", "circles", "clf",\n "cliff", "clfs", "cliffs", "clb", "club", "common", "commons",\n "cor", "corner", "corners", "cors", "course", "crse", "court",\n "ct", "courts", "cts", "cove", "cv", "coves", "creek", "crk",\n "crescent", "cres", "crsent", "crsnt", "crest", "crossing", "crssng",\n "xing", "crossroad", "crossroads", "curve", "dale", "dl", "dam",\n "dm", "div", "divide", "dv", "dvd", "dr", "driv", "drive", "drv",\n "drives", "est", "estate", "estates", "ests", "exp", "expr",\n "express", "expressway", "expw", "expy", "ext", "extension",\n "extn", "extnsn", "exts", "fall", "falls", "fls", "ferry", "frry",\n "fry", "field", "fld", "fields", "flds", "flat", "flt", "flats",\n "flts", "ford", "frd", "fords", "forest", "forests", "frst",\n "forg", "forge", "frg", "forges", "fork", "frk", "forks", "frks",\n "fort", "frt", "ft", "freeway", "freewy", "frway", "frwy", "fwy",\n "garden", "gardn", "grden", "grdn", "gardens", "gdns", "grdns",\n "gateway", "gatewy", "gatway", "gtway", "gtwy", "glen", "gln",\n "glens", "green", "grn", "greens", "grov", "grove", "grv", "groves",\n "harb", "harbor", "harbr", "hbr", "hrbor", "harbors", "haven",\n "hvn", "ht", "hts", "highway", "highwy", "hiway", "hiwy", "hway",\n "hwy", "hill", "hl", "hills", "hls", "hllw", "hollow", "hollows",\n "holw", "holws", "inlt", "is", "island", "islnd", "islands",\n "islnds", "iss", "isle", "isles", "jct", "jction", "jctn", "junction",\n "junctn", "juncton", "jctns", "jcts", "junctions", "key", "ky",\n "keys", "kys", "knl", "knol", "knoll", "knls", "knolls", "lk",\n "lake", "lks", "lakes", "land", "landing", "lndg", "lndng", "lane",\n "ln", "lgt", "light", "lights", "lf", "loaf", "lck", "lock",\n "lcks", "locks", "ldg", "ldge", "lodg", "lodge", "loop", "loops",\n "mall", "mnr", "manor", "manors", "mnrs", "meadow", "mdw", "mdws",\n "meadows", "medows", "mews", "mill", "mills", "missn", "mssn",\n "motorway", "mnt", "mt", "mount", "mntain", "mntn", "mountain",\n "mountin", "mtin", "mtn", "mntns", "mountains", "nck", "neck",\n "orch", "orchard", "orchrd", "oval", "ovl", "overpass", "park",\n "prk", "parks", "parkway", "parkwy", "pkway", "pkwy", "pky",\n "parkways", "pkwys", "pass", "passage", "path", "paths", "pike",\n "pikes", "pine", "pines", "pnes", "pl", "plain", "pln", "plains",\n "plns", "plaza", "plz", "plza", "point", "pt", "points", "pts",\n "port", "prt", "ports", "prts", "pr", "prairie", "prr", "rad",\n "radial", "radiel", "radl", "ramp", "ranch", "ranches", "rnch",\n "rnchs", "rapid", "rpd", "rapids", "rpds", "rest", "rst", "rdg",\n "rdge", "ridge", "rdgs", "ridges", "riv", "river", "rvr", "rivr",\n "rd", "road", "roads", "rds", "route", "row", "rue", "run", "shl",\n "shoal", "shls", "shoals", "shoar", "shore", "shr", "shoars",\n "shores", "shrs", "skyway", "spg", "spng", "spring", "sprng",\n "spgs", "spngs", "springs", "sprngs", "spur", "spurs", "sq",\n "sqr", "sqre", "squ", "square", "sqrs", "squares", "sta", "station",\n "statn", "stn", "stra", "strav", "straven", "stravenue", "stravn",\n "strvn", "strvnue", "stream", "streme", "strm", "street", "strt",\n "st", "str", "streets", "smt", "suite", "sumit", "sumitt", "summit",\n "ter", "terr", "terrace", "throughway", "trace", "traces", "trce",\n "track", "tracks", "trak", "trk", "trks", "trafficway", "trail",\n "trails", "trl", "trls", "trailer", "trlr", "trlrs", "tunel",\n "tunl", "tunls", "tunnel", "tunnels", "tunnl", "trnpk", "turnpike",\n "turnpk", "underpass", "un", "union", "unions", "valley", "vally",\n "vlly", "vly", "valleys", "vlys", "vdct", "via", "viadct", "viaduct",\n "view", "vw", "views", "vws", "vill", "villag", "village", "villg",\n "villiage", "vlg", "villages", "vlgs", "ville", "vl", "vis",\n "vist", "vista", "vst", "vsta", "walk", "walks", "wall", "wy",\n "way", "ways", "well", "wells", "wls"),\n usps_abbrev = c("aly",\n "aly", "aly", "aly", "anx", "anx", "anx", "anx", "arc", "arc",\n "ave", "ave", "ave", "ave", "ave", "ave", "ave", "byu", "byu",\n "bch", "bch", "bnd", "bnd", "blf", "blf", "blf", "blfs", "btm",\n "btm", "btm", "btm", "blvd", "blvd", "blvd", "blvd", "br", "br",\n "br", "brg", "brg", "brg", "brk", "brk", "brks", "bg", "bgs",\n "byp", "byp", "byp", "byp", "byp", "cp", "cp", "cp", "cyn", "cyn",\n "cyn", "cpe", "cpe", "cswy", "cswy", "cswy", "ctr", "ctr", "ctr",\n "ctr", "ctr", "ctr", "ctr", "ctr", "ctrs", "cir", "cir", "cir",\n "cir", "cir", "cir", "cirs", "clf", "clf", "clfs", "clfs", "clb",\n "clb", "cmn", "cmns", "cor", "cor", "cors", "cors", "crse", "crse",\n "ct", "ct", "cts", "cts", "cv", "cv", "cvs", "crk", "crk", "cres",\n "cres", "cres", "cres", "crst", "xing", "xing", "xing", "xrd",\n "xrds", "curv", "dl", "dl", "dm", "dm", "dv", "dv", "dv", "dv",\n "dr", "dr", "dr", "dr", "drs", "est", "est", "ests", "ests",\n "expy", "expy", "expy", "expy", "expy", "expy", "ext", "ext",\n "ext", "ext", "exts", "fall", "fls", "fls", "fry", "fry", "fry",\n "fld", "fld", "flds", "flds", "flt", "flt", "flts", "flts", "frd",\n "frd", "frds", "frst", "frst", "frst", "frg", "frg", "frg", "frgs",\n "frk", "frk", "frks", "frks", "ft", "ft", "ft", "fwy", "fwy",\n "fwy", "fwy", "fwy", "gdn", "gdn", "gdn", "gdn", "gdns", "gdns",\n "gdns", "gtwy", "gtwy", "gtwy", "gtwy", "gtwy", "gln", "gln",\n "glns", "grn", "grn", "grns", "grv", "grv", "grv", "grvs", "hbr",\n "hbr", "hbr", "hbr", "hbr", "hbrs", "hvn", "hvn", "hts", "hts",\n "hwy", "hwy", "hwy", "hwy", "hwy", "hwy", "hl", "hl", "hls",\n "hls", "holw", "holw", "holw", "holw", "holw", "inlt", "is",\n "is", "is", "iss", "iss", "iss", "isle", "isle", "jct", "jct",\n "jct", "jct", "jct", "jct", "jcts", "jcts", "jcts", "ky", "ky",\n "kys", "kys", "knl", "knl", "knl", "knls", "knls", "lk", "lk",\n "lks", "lks", "land", "lndg", "lndg", "lndg", "ln", "ln", "lgt",\n "lgt", "lgts", "lf", "lf", "lck", "lck", "lcks", "lcks", "ldg",\n "ldg", "ldg", "ldg", "loop", "loop", "mall", "mnr", "mnr", "mnrs",\n "mnrs", "mdw", "mdws", "mdws", "mdws", "mdws", "mews", "ml",\n "mls", "msn", "msn", "mtwy", "mt", "mt", "mt", "mtn", "mtn",\n "mtn", "mtn", "mtn", "mtn", "mtns", "mtns", "nck", "nck", "orch",\n "orch", "orch", "oval", "oval", "opas", "park", "park", "park",\n "pkwy", "pkwy", "pkwy", "pkwy", "pkwy", "pkwy", "pkwy", "pass",\n "psge", "path", "path", "pike", "pike", "pne", "pnes", "pnes",\n "pl", "pln", "pln", "plns", "plns", "plz", "plz", "plz", "pt",\n "pt", "pts", "pts", "prt", "prt", "prts", "prts", "pr", "pr",\n "pr", "radl", "radl", "radl", "radl", "ramp", "rnch", "rnch",\n "rnch", "rnch", "rpd", "rpd", "rpds", "rpds", "rst", "rst", "rdg",\n "rdg", "rdg", "rdgs", "rdgs", "riv", "riv", "riv", "riv", "rd",\n "rd", "rds", "rds", "rte", "row", "rue", "run", "shl", "shl",\n "shls", "shls", "shr", "shr", "shr", "shrs", "shrs", "shrs",\n "skwy", "spg", "spg", "spg", "spg", "spgs", "spgs", "spgs", "spgs",\n "spur", "spur", "sq", "sq", "sq", "sq", "sq", "sqs", "sqs", "sta",\n "sta", "sta", "sta", "stra", "stra", "stra", "stra", "stra",\n "stra", "stra", "strm", "strm", "strm", "st", "st", "st", "st",\n "sts", "smt", "ste", "smt", "smt", "smt", "ter", "ter", "ter",\n "trwy", "trce", "trce", "trce", "trak", "trak", "trak", "trak",\n "trak", "trfy", "trl", "trl", "trl", "trl", "trlr", "trlr", "trlr",\n "tunl", "tunl", "tunl", "tunl", "tunl", "tunl", "tpke", "tpke",\n "tpke", "upas", "un", "un", "uns", "vly", "vly", "vly", "vly",\n "vlys", "vlys", "via", "via", "via", "via", "vw", "vw", "vws",\n "vws", "vlg", "vlg", "vlg", "vlg", "vlg", "vlg", "vlgs", "vlgs",\n "vl", "vl", "vis", "vis", "vis", "vis", "vis", "walk", "walk",\n "wall", "way", "way", "ways", "wl", "wls", "wls"))\n\nrandomAddresses = function(n){\n tibble(\n addresses = paste(\n sample(10:10000, n, replace = TRUE),\n sample(c("harper", "davis", "van cortland", "marry", "von brown"), n, replace = TRUE),\n sample(USPS$common_abbrev, n, replace = TRUE)\n )\n )\n}\n\nset.seed(1111)\ndf = randomAddresses(10)\n\nUSPS_conv2 = function(x, y) {\n t = str_split(x, " ")\n comm = t[[1]][length(t[[1]])]\n str_replace(x, comm, y[comm])\n}\nUSPS_conv2 = Vectorize(USPS_conv2, "x")\n\nf_MK_conv2 <- function(x, y) {\n x %>% mutate(\n addresses = USPS_conv2(addresses, \n array(data = y$usps_abbrev, dimnames = list(y$common_abbrev))))\n}\nf_MK_conv2(df, USPS)\n#> # A tibble: 10 \xc3\x97 1\n#> addresses \n#> <chr> \n#> 1 8995 davis crk \n#> 2 8527 davis tunl \n#> 3 7663 von brown wall\n#> 4 3043 harper lk \n#> 5 9192 von brown gdn \n#> 6 120 marry riv \n#> 7 72 von brown lcks \n#> 8 8752 marry gdn \n#> 9 7754 davis cor \n#> 10 3745 davis jcts\n\n\nht.create <- function() new.env()\n\nht.insert <- function(ht, key, value) ht[[key]] <- value\nht.insert <- Vectorize(ht.insert, c("key", "value"))\n\nht.lookup <- function(ht, key) ht[[key]]\nht.lookup <- Vectorize(ht.lookup, "key")\n\nht.delete <- function(ht, key) rm(list = key, envir = ht, inherits = FALSE)\nht.delete <- Vectorize(ht.delete, "key")\n\n\nf_MK_replaceString <- function(x, y) {\n ht <- ht.create()\n ht.insert(ht, y$common_abbrev, y$usps_abbrev)\n \n txt <- x$addresses\n i <- sapply(strsplit(txt, ""), function(x) max(which(x == " ")))\n txt <- paste0(\n str_sub(txt, end = i),\n ht.lookup(ht, str_sub(txt, start = i + 1))\n )\n x %>% mutate(addresses = txt)\n}\nf_MK_replaceString(df, USPS)\n#> # A tibble: 10 \xc3\x97 1\n#> addresses \n#> <chr> \n#> 1 8995 davis crk \n#> 2 8527 davis tunl \n#> 3 7663 von brown wall\n#> 4 3043 harper lk \n#> 5 9192 von brown gdn \n#> 6 120 marry riv \n#> 7 72 von brown lcks \n#> 8 8752 marry gdn \n#> 9 7754 davis cor \n#> 10 3745 davis jcts\n\nf_TIC1 <- function(x, y) {\n x %>% mutate(addresses = sapply(\n strsplit(x$addresses, " "),\n function(x) {\n with(y, {\n idx <- match(x, common_abbrev)\n paste0(ifelse(is.na(idx), x, usps_abbrev[idx]),\n collapse = " "\n )\n })\n }\n )\n )\n}\nf_TIC1(df, USPS)\n#> # A tibble: 10 \xc3\x97 1\n#> addresses \n#> <chr> \n#> 1 8995 davis crk \n#> 2 8527 davis tunl \n#> 3 7663 von brown wall\n#> 4 3043 harper lk \n#> 5 9192 von brown gdn \n#> 6 120 marry riv \n#> 7 72 von brown lcks \n#> 8 8752 marry gdn \n#> 9 7754 davis cor \n#> 10 3745 davis jcts\n\n\nf_TIC2 <- function(x, y) {\n res <- c()\n for (s in x$addresses) {\n v <- unlist(strsplit(s, "\\\\W+"))\n for (p in v) {\n k <- match(p, y$common_abbrev)\n if (!is.na(k)) {\n s <- with(\n y,\n gsub(\n sprintf("\\\\b%s\\\\b", common_abbrev[k]),\n usps_abbrev[k],\n s\n )\n )\n }\n }\n res <- append(res, s)\n }\n x %>% mutate(addresses = res)\n}\nf_TIC2(df, USPS)\n#> # A tibble: 10 \xc3\x97 1\n#> addresses \n#> <chr> \n#> 1 8995 davis crk \n#> 2 8527 davis tunl \n#> 3 7663 von brown wall\n#> 4 3043 harper lk \n#> 5 9192 von brown gdn \n#> 6 120 marry riv \n#> 7 72 von brown lcks \n#> 8 8752 marry gdn \n#> 9 7754 davis cor \n#> 10 3745 davis jcts\n\n\nf_TIC3 <- function(x, y) {\n x.split <- strsplit(x$addresses, " ")\n lut <- with(y, setNames(usps_abbrev, common_abbrev))\n grp <- rep(seq_along(x.split), lengths(x.split))\n xx <- unlist(x.split)\n r <- lut[xx]\n x %>% mutate(addresses = tapply(\n replace(xx, !is.na(r), na.omit(r)),\n grp,\n function(s) paste0(s, collapse = " ")\n ))\n}\nf_TIC3(df, USPS)\n#> # A tibble: 10 \xc3\x97 1\n#> addresses \n#> <chr> \n#> 1 8995 davis crk \n#> 2 8527 davis tunl \n#> 3 7663 von brown wall\n#> 4 3043 harper lk \n#> 5 9192 von brown gdn \n#> 6 120 marry riv \n#> 7 72 von brown lcks \n#> 8 8752 marry gdn \n#> 9 7754 davis cor \n#> 10 3745 davis jcts\n\nf_TIC4 <- function(x, y) {\n xb <- gsub("^.*\\\\s+", "", x$addresses, perl = TRUE)\n rp <- with(USPS, usps_abbrev[match(xb, common_abbrev)])\n x %>% mutate(addresses = paste0(gsub("\\\\w+$", "", x$addresses), replace(xb, !is.na(rp), na.omit(rp))))\n}\nf_TIC4(df, USPS)\n#> # A tibble: 10 \xc3\x97 1\n#> addresses \n#> <chr> \n#> 1 8995 davis crk \n#> 2 8527 davis tunl \n#> 3 7663 von brown wall\n#> 4 3043 harper lk \n#> 5 9192 von brown gdn \n#> 6 120 marry riv \n#> 7 72 von brown lcks \n#> 8 8752 marry gdn \n#> 9 7754 davis cor \n#> 10 3745 davis jcts\n\nf_JM <- function(x, y) {\n x$abbreviation <- gsub("^.* ", "", x$addresses, perl = TRUE)\n setDT(x)\n setDT(y)\n x[y, abbreviation := usps_abbrev, on = .(abbreviation = common_abbrev)]\n x$addresses <- paste(str_extract(x$addresses, "^.* "), x$abbreviation, sep = "")\n x$abbreviation <- NULL\n return(as_tibble(x))\n}\nf_JM(df, USPS)\n#> # A tibble: 10 \xc3\x97 1\n#> addresses \n#> <chr> \n#> 1 8995 davis crk \n#> 2 8527 davis tunl \n#> 3 7663 von brown wall\n#> 4 3043 harper lk \n#> 5 9192 von brown gdn \n#> 6 120 marry riv \n#> 7 72 von brown lcks \n#> 8 8752 marry gdn \n#> 9 7754 davis cor \n#> 10 3745 davis jcts\n\nset.seed(1111)\ndf = randomAddresses(100)\n\nlibrary(microbenchmark)\nmb1 <- microbenchmark(\n f_MK_conv2(df, USPS),\n f_MK_replaceString(df, USPS),\n f_TIC1(df, USPS),\n f_TIC2(df, USPS),\n f_TIC3(df, USPS),\n f_TIC4(df, USPS),\n f_JM(df, USPS),\n times = 20L\n)\nggplot2::autoplot(mb1)\n#> Coordinate system already present. Adding new coordinate system, which will replace the existing one.\nRun Code Online (Sandbox Code Playgroud)\n
set.seed(1111)\ndf = randomAddresses(1000)\n\nlibrary(microbenchmark)\nmb1 <- microbenchmark(\n f_MK_conv2(df, USPS),\n f_MK_replaceString(df, USPS),\n f_TIC1(df, USPS),\n f_TIC2(df, USPS),\n f_TIC3(df, USPS),\n f_TIC4(df, USPS),\n f_JM(df, USPS),\n times = 20L\n)\nggplot2::autoplot(mb1)\n#> Coordinate system already present. Adding new coordinate system, which will replace the existing one.\nRun Code Online (Sandbox Code Playgroud)\n
set.seed(1111)\ndf = randomAddresses(10000)\n\nlibrary(microbenchmark)\nmb1 <- microbenchmark(\n f_MK_conv2(df, USPS),\n f_MK_replaceString(df, USPS),\n f_TIC1(df, USPS),\n f_TIC2(df, USPS),\n f_TIC3(df, USPS),\n f_TIC4(df, USPS),\n f_JM(df, USPS),\n times = 20L\n)\nggplot2::autoplot(mb1)\n#> Coordinate system already present. Adding new coordinate system, which will replace the existing one.\nRun Code Online (Sandbox Code Playgroud)\n
set.seed(1111)\ndf = randomAddresses(100000)\n\nlibrary(microbenchmark)\nmb1 <- microbenchmark(\n f_MK_replaceString(df, USPS),\n f_TIC3(df, USPS),\n f_TIC4(df, USPS),\n f_JM(df, USPS),\n times = 20L\n)\nggplot2::autoplot(mb1)\n#> Coordinate system already present. Adding new coordinate system, which will replace the existing one.\nRun Code Online (Sandbox Code Playgroud)\n
set.seed(1111)\ndf = randomAddresses(1000000)\n\nlibrary(microbenchmark)\nmb1 <- microbenchmark(\n f_MK_replaceString(df, USPS),\n f_TIC4(df, USPS),\n f_JM(df, USPS),\n times = 20L\n)\nggplot2::autoplot(mb1)\n#> Coordinate system already present. Adding new coordinate system, which will replace the existing one.\nRun Code Online (Sandbox Code Playgroud)\n
由reprex 包于 2021 年 11 月 4 日创建(v2.0.1)
\n精彩的答案@Marek和@TIC!经过一些调整和基准测试后,我认为这种 data.table \'split/lookup-replace/paste\' 方法可能会更快:
\nlibrary(tidyverse)\nlibrary(data.table)\n\nn=1000000\nset.seed(1111)\ndf = tibble(\n add