mee*_*ram 2 python split dataframe pandas
我的问题与这个和这个类似,但我无法让他们的解决方案解决我的问题。
我有一个如下所示的数据框:
study_id fuzzy_market
0 study1 [Age: 18-67], [Country of Birth: Austria, Germany], [Country: Austria, Germany], [Language: German]
1 study2 [Country: Germany], [Management experience: Yes]
2 study3 [Country: United Kingdom], [Language: English]
3 study4 [Age: 18-67], [Country of Birth: Austria, Germany], [Country: Austria, Germany], [Language: German]
4 study5 [Age: 48-99]
Run Code Online (Sandbox Code Playgroud)
我希望它看起来像这样:
| 研究编号 | 年龄 | 出生国家 | 国家 | 语言 | 管理经验 |
|---|---|---|---|---|---|
| 研究1 | 18-67 | 奥地利、德国 | 奥地利、德国 | 德语 | 没有任何 |
| 研究2 | 没有任何 | 没有任何 | 德国 | 没有任何 | 是的 |
| 研究3 | 没有任何 | 没有任何 | 英国 | 英语 | 没有任何 |
| 研究4 | 18-67 | 奥地利、德国 | 奥地利、德国 | 德语 | 没有任何 |
| 研究5 | 48-99 | 没有任何 | 没有任何 | 没有任何 | 没有任何 |
因此,每行一行study_id,列中每个冒号之前的文本fuzzy_market作为列标题,每个冒号之后的文本作为单元格中的数据。如果某列没有相关数据,我想用 来填充None。所有列都可以是字符串。我不知道会有多少列,所以我需要它是动态的。
这是设置和数据:
import pandas as pd
import numpy as np
import re
np.random.seed(12345)
df = pd.DataFrame.from_dict({'study_id': {0: 'study1',
1: 'study2',
2: 'study3',
3: 'study4',
4: 'study5'},
'fuzzy_market': {0: '[Age: 18-67], [Country of Birth: Austria, Germany], [Country: Austria, Germany], [Language: German]',
1: '[Country: Germany], [Management experience: Yes]',
2: '[Country: United Kingdom], [Language: English]',
3: '[Age: 18-67], [Country of Birth: Austria, Germany], [Country: Austria, Germany], [Language: German]',
4: '[Age: 48-99]'}})
Run Code Online (Sandbox Code Playgroud)
到目前为止,我已经尝试过操作列中的字符串fuzzy_markets,但我认为这种方法不正确。
# a function to strip the square brackets, as I'm not sure this is really a list in here
def remove_square_brackets(x):
return re.sub(r"[\[\]]", "", x)
# make a new dataframe where there are new columns for data after every comma
df2 = df.join(df['fuzzy_market'].apply(remove_square_brackets).str.split(',', expand=True))
# rename the columns arbitrarily - these will need to be the question titles eventually e.g. Age rather than A, Country of Birth rather than B etc.
df2.columns = ('study_id', 'fuzzy_market', 'A', 'B', 'C', 'D', 'E', 'F')
# try and split again
df3 = df2[['study_id','A', 'B']].join(df2['A'].str.split(":", expand=True).rename(columns={0:'A1', 1:'A2'})).join(df2['B'].str.split(":", expand=True).rename(columns={0:'B1', 1:'B2'}))
# this isn't quite there yet
df3
study_id A B A1 A2 B1 B2
0 study1 Age: 18-67 Country of Birth: Austria Age 18-67 Country of Birth Austria
1 study2 Country: Germany Management experience: Yes Country Germany Management experience Yes
2 study3 Country: United Kingdom Language: English Country United Kingdom Language English
3 study4 Age: 18-67 Country of Birth: Austria Age 18-67 Country of Birth Austria
4 study5 Age: 48-99 None Age 48-99 None None
Run Code Online (Sandbox Code Playgroud)
感谢您的任何帮助或提示!
我们可以使用findall从每一行中提取所有匹配的键值对,然后map将这些对dict创建一个数据框
p = df['fuzzy_market'].str.findall(r'([^:\[]+): ([^\]]+)')
df[['study_id']].join(pd.DataFrame(map(dict, p)))
Run Code Online (Sandbox Code Playgroud)
study_id Age Country of Birth Country Language Management experience
0 study1 18-67 Austria, Germany Austria, Germany German NaN
1 study2 NaN NaN Germany NaN Yes
2 study3 NaN NaN United Kingdom English NaN
3 study4 18-67 Austria, Germany Austria, Germany German NaN
4 study5 48-99 NaN NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1215 次 |
| 最近记录: |