IT-*_*Fan 3 android google-maps
我想知道Google map使用哪种算法来计算2点之间的方向?谷歌曾经提到过它吗?
p/s:我问谷歌使用的算法找到2点之间的最短路线.
Bar*_*Yeo 11
据我所知,Google从未公开声明它使用P2P查询的算法.尽管在查询时间方面来自文献的现有技术是Abraham等人提出的Hub标记算法.http://link.springer.com/chapter/10.1007/978-3-642-20662-7_20.最近发布了该领域的最佳书面调查,作为Microsoft技术报告http://research.microsoft.com/pubs/207102/MSR-TR-2014-4.pdf.
简短的版本是......
Hub标记算法为静态道路网络提供最快的查询,但需要运行大量的ram(18 GiB).
Transit节点路由稍慢,但它只需要大约2 GiB的内存并且预处理时间更快.
收缩层次结构在快速预处理时间,低空间要求(0.4 GiB)和快速查询时间之间提供了良好的折衷.
没有一种算法完全占主导地位......
Peter Sanders的Google技术讲座可能会引起人们的兴趣
https://www.youtube.com/watch?v=-0ErpE8tQbw
这也是Andrew Goldberg的演讲
https://www.youtube.com/watch?v=WPrkc78XLhw
KIT的Peter Sanders研究组网站提供了收缩层次结构的开源实现.http://algo2.iti.kit.edu/english/routeplanning.php
你应该经常检查 android 源代码是否有这样的疑问。
private static void computeDistanceAndBearing(double lat1, double lon1,
double lat2, double lon2, float[] results) {
int MAXITERS = 20;
// Convert lat/long to radians
lat1 *= Math.PI / 180.0;
lat2 *= Math.PI / 180.0;
lon1 *= Math.PI / 180.0;
lon2 *= Math.PI / 180.0;
double a = 6378137.0; // WGS84 major axis
double b = 6356752.3142; // WGS84 semi-major axis
double f = (a - b) / a;
double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b);
double L = lon2 - lon1;
double A = 0.0;
double U1 = Math.atan((1.0 - f) * Math.tan(lat1));
double U2 = Math.atan((1.0 - f) * Math.tan(lat2));
double cosU1 = Math.cos(U1);
double cosU2 = Math.cos(U2);
double sinU1 = Math.sin(U1);
double sinU2 = Math.sin(U2);
double cosU1cosU2 = cosU1 * cosU2;
double sinU1sinU2 = sinU1 * sinU2;
double sigma = 0.0;
double deltaSigma = 0.0;
double cosSqAlpha = 0.0;
double cos2SM = 0.0;
double cosSigma = 0.0;
double sinSigma = 0.0;
double cosLambda = 0.0;
double sinLambda = 0.0;
double lambda = L; // initial guess
for (int iter = 0; iter < MAXITERS; iter++) {
double lambdaOrig = lambda;
cosLambda = Math.cos(lambda);
sinLambda = Math.sin(lambda);
double t1 = cosU2 * sinLambda;
double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda;
double sinSqSigma = t1 * t1 + t2 * t2; // (14)
sinSigma = Math.sqrt(sinSqSigma);
cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15)
sigma = Math.atan2(sinSigma, cosSigma); // (16)
double sinAlpha = (sinSigma == 0) ? 0.0 :
cosU1cosU2 * sinLambda / sinSigma; // (17)
cosSqAlpha = 1.0 - sinAlpha * sinAlpha;
cos2SM = (cosSqAlpha == 0) ? 0.0 :
cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18)
double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn
A = 1 + (uSquared / 16384.0) * // (3)
(4096.0 + uSquared *
(-768 + uSquared * (320.0 - 175.0 * uSquared)));
double B = (uSquared / 1024.0) * // (4)
(256.0 + uSquared *
(-128.0 + uSquared * (74.0 - 47.0 * uSquared)));
double C = (f / 16.0) *
cosSqAlpha *
(4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10)
double cos2SMSq = cos2SM * cos2SM;
deltaSigma = B * sinSigma * // (6)
(cos2SM + (B / 4.0) *
(cosSigma * (-1.0 + 2.0 * cos2SMSq) -
(B / 6.0) * cos2SM *
(-3.0 + 4.0 * sinSigma * sinSigma) *
(-3.0 + 4.0 * cos2SMSq)));
lambda = L +
(1.0 - C) * f * sinAlpha *
(sigma + C * sinSigma *
(cos2SM + C * cosSigma *
(-1.0 + 2.0 * cos2SM * cos2SM))); // (11)
double delta = (lambda - lambdaOrig) / lambda;
if (Math.abs(delta) < 1.0e-12) {
break;
}
}
float distance = (float) (b * A * (sigma - deltaSigma));
results[0] = distance;
if (results.length > 1) {
float initialBearing = (float) Math.atan2(cosU2 * sinLambda,
cosU1 * sinU2 - sinU1 * cosU2 * cosLambda);
initialBearing *= 180.0 / Math.PI;
results[1] = initialBearing;
if (results.length > 2) {
float finalBearing = (float) Math.atan2(cosU1 * sinLambda,
-sinU1 * cosU2 + cosU1 * sinU2 * cosLambda);
finalBearing *= 180.0 / Math.PI;
results[2] = finalBearing;
}
}
}
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
14120 次 |
最近记录: |