Joh*_*ish 8 text label r significance ggplot2
使用这些数据...
hogs.sample<-structure(list(Zone = c("B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "D",
"D", "D", "D", "D", "D", "D", "D", "D", "D", "D", "D", "D", "D",
"D", "D", "D", "D", "D", "D"), Levelname = c("Medium", "High",
"Low", "Med.High", "Med.High", "Med.High", "Med.High", "Med.High",
"Med.High", "Medium", "Med.High", "Medium", "Med.High", "High",
"Medium", "High", "Low", "Med.High", "Low", "High", "Medium",
"Medium", "Med.High", "Low", "Low", "Med.High", "Low", "Low",
"High", "High", "Med.High", "High", "Med.High", "Med.High", "Medium",
"High", "Low", "Low", "Med.High", "Low"), hogs.fit = c(-0.122,
-0.871, -0.279, -0.446, 0.413, 0.011, 0.157, 0.131, 0.367, -0.23,
0.007, 0.05, 0.04, -0.184, -0.265, -1.071, -0.223, 0.255, -0.635,
-1.103, 0.008, -0.04, 0.831, 0.042, -0.005, -0.022, 0.692, 0.402,
0.615, 0.785, 0.758, 0.738, 0.512, 0.222, -0.424, 0.556, -0.128,
-0.495, 0.591, 0.923)), row.names = c(NA, -40L), groups = structure(list(
Zone = c("B", "D"), .rows = structure(list(1:20, 21:40), ptype = integer(0), class = c("vctrs_list_of",
"vctrs_vctr", "list"))), row.names = c(NA, -2L), class = c("tbl_df",
"tbl", "data.frame"), .drop = TRUE), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"))
Run Code Online (Sandbox Code Playgroud)
我正在尝试将基于 Tukeys HSD 的重要字母添加到下图中......
library(agricolae)
library(tidyverse)
hogs.plot <- ggplot(hogs.sample, aes(x = Zone, y = exp(hogs.fit),
fill = factor(Levelname, levels = c("High", "Med.High", "Medium", "Low")))) +
stat_summary(fun = mean, geom = "bar", position = position_dodge(0.9), color = "black") +
stat_summary(fun.data = mean_se, geom = "errorbar", position = position_dodge(0.9), width = 0.2) +
labs(x = "", y = "CPUE (+/-1SE)", legend = NULL) +
scale_y_continuous(expand = c(0,0), labels = scales::number_format(accuracy = 0.1)) +
scale_fill_manual(values = c("midnightblue", "dodgerblue4", "steelblue3", 'lightskyblue')) +
scale_x_discrete(breaks=c("B", "D"), labels=c("Econfina", "Steinhatchee"))+
scale_color_hue(l=40, c = 100)+
# coord_cartesian(ylim = c(0, 3.5)) +
labs(title = "Hogs", x = "", legend = NULL) +
theme(panel.border = element_blank(), panel.grid.major = element_blank(), panel.background = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(),
axis.text.x = element_text(), axis.title.x = element_text(vjust = 0),
axis.title.y = element_text(size = 8))+
theme(legend.title = element_blank(),
legend.position = "none")
hogs.plot
Run Code Online (Sandbox Code Playgroud)
我理想的输出是这样的......
我不确定这些字母在我的样本图中是否 100% 准确,但它们表示哪些组彼此之间存在显着差异。区域是独立的,因此我不想在两个区域之间进行任何比较,因此我使用以下代码单独运行它们。
hogs.aov.b <- aov(hogs.fit ~Levelname, data = filter(hogs.sample, Zone == "B"))
hogs.aov.summary.b <- summary(hogs.aov.b)
hogs.tukey.b <- TukeyHSD(hogs.aov.b)
hogs.tukey.b
hogs.aov.d <- aov(hogs.fit ~ Levelname, data = filter(hogs.sample, Zone == "D"))
hogs.aov.summary.d <- summary(hogs.aov.d)
hogs.tukey.d <- TukeyHSD(hogs.aov.d)
hogs.tukey.d
Run Code Online (Sandbox Code Playgroud)
我尝试了这条路线,但除了猪之外,我还有很多物种可以应用此方法。 在图表中显示统计上显着的差异
我可以一次获取一个区域的字母,但我不确定如何将两个区域添加到图中。它们也出故障了。我从网页修改了这段代码,但这些字母没有很好地放置在栏的顶部。
library(agricolae)
library(tidyverse)
# get highest point overall
abs_max <- max(bass.dat.d$bass.fit)
# get the highest point for each class
maxs <- bass.dat.d %>%
group_by(Levelname) %>%
# I like to add a little bit to each value so it rests above
# the highest point. Using a percentage of the highest point
# overall makes this code a bit more general
summarise(bass.fit=max(mean(exp(bass.fit))))
# get Tukey HSD results
Tukey_test <- aov(bass.fit ~ Levelname, data=bass.dat.d) %>%
HSD.test("Levelname", group=TRUE) %>%
.$groups %>%
as_tibble(rownames="Levelname") %>%
rename("Letters_Tukey"="groups") %>%
select(-bass.fit) %>%
# and join it to the max values we calculated -- these are
# your new y-coordinates
left_join(maxs, by="Levelname")
Run Code Online (Sandbox Code Playgroud)
也有很多这样的例子https://www.staringatr.com/3-the-grammar-of-graphics/bar-plots/3_tukeys/但它们都只是手动添加文本。如果代码能够获取 Tukey 输出并自动将重要性字母添加到图中,那就太好了。
谢谢
jar*_*rot 10
我不明白你的数据/分析(例如,你为什么exp()
在 hogs.fit 上使用以及字母应该是什么?)所以我不确定这是否正确,但没有其他人回答,所以这里是我最好的猜测:
## Source: Rosane Rech\n## https://statdoe.com/cld-customisation/#adding-the-letters-indicating-significant-differences\n## https://www.youtube.com/watch?v=Uyof3S1gx3M\n\nlibrary(tidyverse)\nlibrary(ggthemes)\nlibrary(multcompView)\n\n# analysis of variance\nanova <- aov(weight ~ feed, data = chickwts)\n\n# Tukey\'s test\ntukey <- TukeyHSD(anova)\n\n# compact letter display\ncld <- multcompLetters4(anova, tukey)\n\n# table with factors and 3rd quantile\ndt <- group_by(chickwts, feed) %>%\n summarise(w=mean(weight), sd = sd(weight)) %>%\n arrange(desc(w))\n\n# extracting the compact letter display and adding to the Tk table\ncld <- as.data.frame.list(cld$feed)\ndt$cld <- cld$Letters\n\nprint(dt)\n#> # A tibble: 6 \xc3\x97 4\n#> feed w sd cld \n#> <fct> <dbl> <dbl> <chr>\n#> 1 sunflower 329. 48.8 a \n#> 2 casein 324. 64.4 a \n#> 3 meatmeal 277. 64.9 ab \n#> 4 soybean 246. 54.1 b \n#> 5 linseed 219. 52.2 bc \n#> 6 horsebean 160. 38.6 c\n\nggplot(dt, aes(feed, w)) + \n geom_bar(stat = "identity", aes(fill = w), show.legend = FALSE) +\n geom_errorbar(aes(ymin = w-sd, ymax=w+sd), width = 0.2) +\n labs(x = "Feed Type", y = "Average Weight Gain (g)") +\n geom_text(aes(label = cld, y = w + sd), vjust = -0.5) +\n ylim(0,410) +\n theme_few()\n
Run Code Online (Sandbox Code Playgroud)\nhogs.sample <- structure(list(Zone = c("B", "B", "B", "B", "B", "B", "B", "B", \n "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "D", \n "D", "D", "D", "D", "D", "D", "D", "D", "D", "D", "D", "D", "D", \n "D", "D", "D", "D", "D", "D"), Levelname = c("Medium", "High", \n "Low", "Med.High", "Med.High", "Med.High", "Med.High", "Med.High", \n "Med.High", "Medium", "Med.High", "Medium", "Med.High", "High", \n "Medium", "High", "Low", "Med.High", "Low", "High", "Medium", \n "Medium", "Med.High", "Low", "Low", "Med.High", "Low", "Low", \n "High", "High", "Med.High", "High", "Med.High", "Med.High", "Medium", \n "High", "Low", "Low", "Med.High", "Low"), hogs.fit = c(-0.122, \n -0.871, -0.279, -0.446, 0.413, 0.011, 0.157, 0.131, 0.367, -0.23, \n 0.007, 0.05, 0.04, -0.184, -0.265, -1.071, -0.223, 0.255, -0.635, \n -1.103, 0.008, -0.04, 0.831, 0.042, -0.005, -0.022, 0.692, 0.402, \n 0.615, 0.785, 0.758, 0.738, 0.512, 0.222, -0.424, 0.556, -0.128, \n -0.495, 0.591, 0.923)), row.names = c(NA, -40L), groups = structure(list(\n Zone = c("B", "D"), .rows = structure(list(1:20, 21:40), ptype = integer(0), class = c("vctrs_list_of", \n "vctrs_vctr", "list"))), row.names = c(NA, -2L), class = c("tbl_df", \n "tbl", "data.frame"), .drop = TRUE), class = c("grouped_df", \n "tbl_df", "tbl", "data.frame"))\n\n# anova\nanova <- aov(hogs.fit ~ Levelname * Zone, data = hogs.sample)\n\n# Tukey\'s test\ntukey <- TukeyHSD(anova)\n\n# compact letter display\ncld <- multcompLetters4(anova, tukey)\n\n# table with factors and 3rd quantile\ndt <- hogs.sample %>% \n group_by(Zone, Levelname) %>%\n summarise(w=mean(exp(hogs.fit)), sd = sd(exp(hogs.fit)) / sqrt(n())) %>%\n arrange(desc(w)) %>% \n ungroup() %>% \n mutate(Levelname = factor(Levelname,\n levels = c("High",\n "Med.High",\n "Medium",\n "Low"),\n ordered = TRUE))\n\n# extracting the compact letter display and adding to the Tk table\ncld2 <- data.frame(letters = cld$`Levelname:Zone`$Letters)\ndt$cld <- cld2$letters\n\nprint(dt)\n#> # A tibble: 8 \xc3\x97 5\n#> Zone Levelname w sd cld \n#> <chr> <ord> <dbl> <dbl> <chr>\n#> 1 D High 1.97 0.104 a \n#> 2 D Med.High 1.69 0.206 ab \n#> 3 D Low 1.36 0.258 abc \n#> 4 B Med.High 1.14 0.0872 abc \n#> 5 B Medium 0.875 0.0641 bcd \n#> 6 D Medium 0.874 0.111 bcd \n#> 7 B Low 0.696 0.0837 cd \n#> 8 B High 0.481 0.118 d\n\nggplot(dt, aes(x = Levelname, y = w)) + \n geom_bar(stat = "identity", aes(fill = Levelname), show.legend = FALSE) +\n geom_errorbar(aes(ymin = w - sd, ymax = w + sd), width = 0.2) +\n labs(x = "Levelname", y = "Average hogs.fit") +\n geom_text(aes(label = cld, y = w + sd), vjust = -0.5) +\n facet_wrap(~Zone)\n
Run Code Online (Sandbox Code Playgroud)\n由reprex 包于 2021 年 10 月 1 日创建(v2.0.1)
\n我想我可以扩展 jared_mamrot 的答案!
\n首先,您会发现一个可以复制粘贴的表示。下面,我对此有一些补充意见。
\nhogs.sample <- data.frame(\n stringsAsFactors = FALSE,\n Zone = c("B","B","B","B","B","B",\n "B","B","B","B","B","B","B","B","B","B","B","B",\n "B","B","D","D","D","D","D","D","D","D","D",\n "D","D","D","D","D","D","D","D","D","D","D"),\n Levelname = c("Medium","High","Low",\n "Med.High","Med.High","Med.High","Med.High","Med.High",\n "Med.High","Medium","Med.High","Medium","Med.High",\n "High","Medium","High","Low","Med.High","Low","High",\n "Medium","Medium","Med.High","Low","Low","Med.High",\n "Low","Low","High","High","Med.High","High",\n "Med.High","Med.High","Medium","High","Low","Low",\n "Med.High","Low"),\n hogs.fit = c(-0.122,-0.871,-0.279,-0.446,\n 0.413,0.011,0.157,0.131,0.367,-0.23,0.007,0.05,\n 0.04,-0.184,-0.265,-1.071,-0.223,0.255,-0.635,\n -1.103,0.008,-0.04,0.831,0.042,-0.005,-0.022,0.692,\n 0.402,0.615,0.785,0.758,0.738,0.512,0.222,-0.424,\n 0.556,-0.128,-0.495,0.591,0.923)\n)\n\nlibrary(tidyverse)\n\n# {emmeans}, {multcomp} & {multcompView} ----------------------------------\nlibrary(emmeans)\nlibrary(multcomp)\nlibrary(multcompView)\n\n# set up model\nmodel <- lm(exp(hogs.fit) ~ Levelname * Zone, data = hogs.sample)\n\n# get (adjusted) means\nmodel_means <- emmeans(object = model,\n specs = ~ Levelname | Zone) \n\n# add letters to each mean\nmodel_means_cld <- cld(object = model_means,\n adjust = "Tukey",\n Letters = letters,\n alpha = 0.05)\n# show output\nmodel_means_cld\n#> Zone = B:\n#> Levelname emmean SE df lower.CL upper.CL .group\n#> High 0.481 0.199 32 -0.0445 1.01 a \n#> Low 0.696 0.230 32 0.0884 1.30 ab \n#> Medium 0.875 0.199 32 0.3488 1.40 ab \n#> Med.High 1.139 0.133 32 0.7889 1.49 b \n#> \n#> Zone = D:\n#> Levelname emmean SE df lower.CL upper.CL .group\n#> Medium 0.874 0.230 32 0.2673 1.48 a \n#> Low 1.362 0.151 32 0.9650 1.76 ab \n#> Med.High 1.688 0.163 32 1.2592 2.12 b \n#> High 1.969 0.199 32 1.4436 2.50 b \n#> \n#> Results are given on the exp (not the response) scale. \n#> Confidence level used: 0.95 \n#> Conf-level adjustment: sidak method for 4 estimates \n#> P value adjustment: tukey method for comparing a family of 4 estimates \n\n# format output for ggplot\nmodel_means_cld <- model_means_cld %>% \n as.data.frame() %>% \n mutate(Zone = case_when(\n Zone == "B" ~ "Econfina",\n Zone == "D" ~ "Steinhatchee"\n ))\n\n# get ggplot\nggplot(data = model_means_cld,\n aes(x = Levelname, y = emmean, fill = Levelname)) +\n facet_grid(cols = vars(Zone)) +\n geom_bar(stat = "identity", color = "black", show.legend = FALSE) +\n geom_errorbar(aes(ymin = emmean - SE, ymax = emmean + SE), width = 0.2) +\n scale_y_continuous(\n name = "CPUE (adj. mean \xc2\xb1 1 std. error)",\n expand = expansion(mult = c(0, 0.1)),\n labels = scales::number_format(accuracy = 0.1)\n ) +\n xlab(NULL) +\n labs(title = "Hogs",\n caption = "Separaetly per Zone, means followed by a common letter are not significantly different according to the Tukey-test") +\n geom_text(aes(label = str_trim(.group), y = emmean + SE), vjust = -0.5) +\n scale_fill_manual(values = c("midnightblue", "dodgerblue4", "steelblue3", \'lightskyblue\')) +\n theme_classic() +\n theme(\n panel.border = element_blank(),\n panel.grid.major = element_blank(),\n panel.background = element_blank(),\n panel.grid.minor = element_blank(),\n axis.line = element_line(),\n axis.text.x = element_text(),\n axis.title.x = element_text(vjust = 0),\n axis.title.y = element_text(size = 8)\n ) +\n theme(legend.title = element_blank(),\n legend.position = "none")\n
Run Code Online (Sandbox Code Playgroud)\n由reprex 包于 2021 年 10 月 18 日创建(v2.0.1)
\nspecs = ~ Levelname | Zone
in在这里复制了它emmeans()
。您可以选择选项 1,并通过将其更改为 来找到与 jared_mamrot 相同的字母specs = ~ Levelname * Zone
。两个选项都有效,但结果不同,您必须选择您想要的。编辑:我在这个更新的答案中对此进行了相当详细的介绍。emmeans()
最后请注意,如果您使用函数(如)来计算和比较这些平均值,则无需单独计算每个因子级别(组合)的算术平均值。此外,在更复杂的情况下,例如丢失数据,您不应该显示那些简单的算术平均值及其标准误差,而应该直接获取估计的边际平均值,又称为最小二乘平均值,又称为调整平均值,又称为基于模型的平均值。然而,在简单的情况下,它们与简单的算术平均值相同。