Rop*_*shi 1 python scikit-learn one-hot-encoding
我正在使用 ColumnTransformer 为模型构建管道。这就是我的管道的样子,
from sklearn.preprocessing import StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder,OrdinalEncoder,MinMaxScaler
from sklearn.impute import KNNImputer
imputer_transformer = ColumnTransformer([
('knn_imputer',KNNImputer(n_neighbors=5),[0,3,4,6,7])
],remainder='passthrough')
category_transformer = ColumnTransformer([
("kms_driven_engine_min_max_scaler",MinMaxScaler(),[0,6]),
("owner_ordinal_enc",OrdinalEncoder(categories=[['fourth','third','second','first']],handle_unknown='ignore',dtype=np.int16),[3]),
("brand_location_ohe",OneHotEncoder(sparse=False,handle_unknown='ignore'),[2,5]),
],remainder='passthrough')
def build_pipeline_with_estimator(estimator):
return Pipeline([
('imputer',imputer_transformer),
('category_transformer',category_transformer),
('estimator',estimator),
])
Run Code Online (Sandbox Code Playgroud)
这就是我的数据集的样子,
kms_driven owner location mileage power brand engine age
34000.0 first other NaN 12.0 Yamaha 150.0 9
28000.0 first other 72.0 7.0 Hero 100.0 16
5947.0 first other 53.0 19.0 Bajaj NaN 4
11000.0 first delhi 40.0 19.8 Royal Enfield 350.0 7
13568.0 first delhi 63.0 14.0 Suzuki 150.0 5
Run Code Online (Sandbox Code Playgroud)
这就是我在管道中使用 LinearRegression 的方式。
linear_regressor = build_pipeline_with_estimator(LinearRegression())
linear_regressor.fit(X_train,y_train)
print('Linear Regression Train Performance.\n')
print(model_perf(linear_regressor,X_train,y_train))
print('Linear Regression Test Performance.\n')
print(model_perf(linear_regressor,X_test,y_test))
Run Code Online (Sandbox Code Playgroud)
现在,每当我尝试对管道应用线性回归时,我都会收到此错误,
ValueError:无法将字符串转换为浮点数:“班加罗尔”
“banglore”是位置特征中的值之一,我正在尝试对其进行一次性编码,但它失败了,我无法弄清楚这里出了什么问题。任何帮助将不胜感激。
通过插补器后,未插补的列将移至右侧,如文档下的注释中所述:
除非在 passthrough 关键字中指定,否则原始特征矩阵中未指定的列将从生成的转换特征矩阵中删除。使用 passthrough 指定的那些列将添加到变压器输出的右侧。
我们可以先尝试使用输入器:
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder, MinMaxScaler
from sklearn.impute import KNNImputer
from sklearn.linear_model import LinearRegression
imputer_transformer = ColumnTransformer([
('knn_imputer',KNNImputer(n_neighbors=5),[0,3,4,6,7])
],remainder='passthrough')
Run Code Online (Sandbox Code Playgroud)
我们可以使用示例数据进行尝试,您将看到您的分类列现在向右移动:
X_train = pd.DataFrame({'kms':[0,1,2],'owner':['first','first','second'],
'location':['other','other','delhi'],'mileage':[9,8,np.nan],
'power':[3,2,1],'brand':['A','B','C'],'engine':[10,100,1000],'age':[3,4,5]})
imputer_transformer.fit_transform(X_train)
Out[25]:
array([[0.0, 9.0, 3.0, 10.0, 3.0, 'first', 'other', 'A'],
[1.0, 8.0, 2.0, 100.0, 4.0, 'first', 'other', 'B'],
[2.0, 8.5, 1.0, 1000.0, 5.0, 'second', 'delhi', 'C']], dtype=object)
Run Code Online (Sandbox Code Playgroud)
在您的情况下,您可以看到该engine列现在是第四列,而您的序数是第五列,分类的最后两列,因此一个简单的解决方案可能是:
category_transformer = ColumnTransformer([
("kms_driven_engine_min_max_scaler",MinMaxScaler(),[0,3]),
("owner_ordinal_enc",OrdinalEncoder(categories=[['fourth','third','second','first']],
handle_unknown='ignore',dtype=np.int16),[5]),
("brand_location_ohe",OneHotEncoder(sparse=False,handle_unknown='ignore'),[6,7]),
],remainder='passthrough')
y_train = [7,3,2]
linear_regressor = build_pipeline_with_estimator(LinearRegression())
linear_regressor.fit(X_train,y_train)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
1673 次 |
| 最近记录: |