sou*_*uth 26 python neural-network deep-learning huggingface-transformers huggingface
我正在针对多类分类任务微调 BERT 模型。我的问题是我不知道如何向这些 Trainer 实例添加“提前停止”。有任何想法吗?
Tim*_*lin 60
在正确使用EarlyStoppingCallback()
.
from transformers import EarlyStoppingCallback, IntervalStrategy
...
...
# Defining the TrainingArguments() arguments
args = TrainingArguments(
f"training_with_callbacks",
evaluation_strategy = IntervalStrategy.STEPS, # "steps"
eval_steps = 50, # Evaluation and Save happens every 50 steps
save_total_limit = 5, # Only last 5 models are saved. Older ones are deleted.
learning_rate=2e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=5,
weight_decay=0.01,
push_to_hub=False,
metric_for_best_model = 'f1',
load_best_model_at_end=True)
Run Code Online (Sandbox Code Playgroud)
你需要:
load_best_model_at_end = True
(EarlyStoppingCallback()
要求这是True
)。evaluation_strategy
='steps'
或IntervalStrategy.STEPS
代替'epoch'
.eval_steps = 50
(评估之后的指标N steps
)。metric_for_best_model = 'f1'
在你的Trainer()
:
trainer = Trainer(
model,
args,
...
compute_metrics=compute_metrics,
callbacks = [EarlyStoppingCallback(early_stopping_patience=3)]
)
Run Code Online (Sandbox Code Playgroud)
当然,当您使用 时compute_metrics()
,例如它可以是如下函数:
def compute_metrics(p):
pred, labels = p
pred = np.argmax(pred, axis=1)
accuracy = accuracy_score(y_true=labels, y_pred=pred)
recall = recall_score(y_true=labels, y_pred=pred)
precision = precision_score(y_true=labels, y_pred=pred)
f1 = f1_score(y_true=labels, y_pred=pred)
return {"accuracy": accuracy, "precision": precision, "recall": recall, "f1": f1}
Run Code Online (Sandbox Code Playgroud)
返回的compute_metrics()
应该是一个字典,您可以访问函数内您想要/计算的任何指标并返回。
注意:在较新的transformers
版本中,建议使用Enum
IntervalStrategy.steps
(请参阅参考资料TrainingArguments()
)而不是纯steps
字符串,后者很快就会被弃用。
归档时间: |
|
查看次数: |
17634 次 |
最近记录: |