Jun*_*ari 4 deep-learning tensorflow
Predict_proba 返回神经网络中的误差
https://faroit.com/keras-docs/1.0.0/models/sequential/#the-sequential-model-api
我使用的 Tensorflow 版本:2.6.0
代码:
#creating the object (Initializing the ANN)
import tensorflow as tf
from tensorflow import keras
LAYERS = [
tf.keras.layers.Dense(50, activation="relu", input_shape=X_train.shape[1:]),
tf.keras.layers.LeakyReLU(),
tf.keras.layers.Dense(25, activation="relu"),
tf.keras.layers.Dense(10, activation="relu"),
tf.keras.layers.Dense(5, activation="relu"),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(1, activation='sigmoid')
]
LOSS = "binary_crossentropy"
OPTIMIZER = tf.keras.optimizers.Adam(learning_rate=1e-3)
model_cEXT = tf.keras.models.Sequential(LAYERS)
model_cEXT.compile(loss=LOSS , optimizer=OPTIMIZER, metrics=['accuracy'])
EPOCHS = 100
checkpoint_cb = tf.keras.callbacks.ModelCheckpoint("model_cEXT.h5", save_best_only=True)
early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True)
tensorboard_cb = tf.keras.callbacks.TensorBoard(log_dir="logs")
CALLBACKS = [checkpoint_cb, early_stopping_cb, tensorboard_cb]
model_cEXT.fit(X_train, y_train['cEXT'], epochs = EPOCHS, validation_data=(X_test, y_test['cEXT']), callbacks = CALLBACKS)
model_cEXT.predict_proba(X_test)
Run Code Online (Sandbox Code Playgroud)
错误:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-72-8f06353cf345> in <module>()
----> 1 model_cEXT.predict_proba(X_test)
AttributeError: 'Sequential' object has no attribute 'predict_proba'
Run Code Online (Sandbox Code Playgroud)
编辑: 我需要sklearn的类似predict_proba输出,它是可视化所需要的
skplt.metrics.plot_precision_recall_curve(y_test['cEXT'].values, y_prob)
plt.title('Precision-Recall Curve - cEXT')
plt.show()
Run Code Online (Sandbox Code Playgroud)
小智 6
使用此代码代替
predict_prob=model.predict([testa,testb])
predict_classes=np.argmax(predict_prob,axis=1)
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
24665 次 |
最近记录: |