如何在工作流模板 Spark 作业中传递参数

pro*_*sql 3 python workflow apache-spark google-cloud-dataproc

我的工作流程有问题spark dataproc

这在启动时有效:

gcloud dataproc jobs submit spark \
--project myproject \
--cluster=mycluster \
--region=europe-west3 \
--jars=gs:path\file.jar,gs://path//depende.jar \
--class=it.flow \
--properties spark.num.executors=2,spark.executor.cores=3,spark.executor.memory=5g,spark.driver.cores=2,spark.driver.memory=10g,spark.dynamicAllocation.enabled=false,spark.executor.userClassPathFirst=true,spark.driver.userClassPathFirst=true,spark.jars.packages=com.google.cloud:google-cloud-logging:2.2.0  
--  20210820 010000 000 0 000 TRY
Run Code Online (Sandbox Code Playgroud)

我创建了一个 dataproc 工作流程和 python 代码以通过 Composer 启动它并且它可以工作。

现在我必须使最终参数动态化(-- 20210820 010000 000 0 000 TRY

但是,我无法将参数传递给工作流程:

gcloud dataproc workflow-templates create try1 --region=europe-west3
 
gcloud dataproc workflow-templates add-job spark \
--workflow-template=try1 \
--step-id=create_try1 \
--class=it.flow \
 --region=europe-west3 \
--jars=gs:path\file.jar,gs://path//depende.jar \
 --properties spark.num.executors=2,spark.executor.cores=3,spark.executor.memory=5g,spark.driver.cores=2,spark.driver.memory=10g,spark.dynamicAllocation.enabled=false,spark.executor.userClassPathFirst=true,spark.driver.userClassPathFirst=true,spark.jars.packages=com.google.cloud:google-cloud-logging:2.2.0 \
 -- $arg1 $arg2  
 
gcloud dataproc workflow-templates set-cluster-selector TRY1  --region=europe-west3 --cluster-labels=goog-dataproc-cluster-name=cluster
Run Code Online (Sandbox Code Playgroud)

这个电话:

gcloud dataproc workflow-templates instantiate TRY1  --region=europe-west3 --parameters="arg1=20210820"
Run Code Online (Sandbox Code Playgroud)

导致以下错误:

错误:(gcloud.dataproc.workflow-templates.instantiate)INVALID_ARGUMENT:模板不包含名称为 arg1 的参数。

我该如何解决这个问题?

yaml 文件

id: create_file
jobs:
- sparkJob:
    args:
    - ARG1
    - ARG2
    jarFileUris:
    - gs://mybucket/try_file.jar
    - gs://mybucket/try_dependencies_2.jar
    mainClass: org.apache.hadoop.examples.tryFile
    properties:
      spark.driver.cores: '2'
      spark.driver.memory: 10g
      spark.driver.userClassPathFirst: 'true'
      spark.dynamicAllocation.enabled: 'false'
      spark.executor.cores: '3'
      spark.executor.memory: 5g
      spark.executor.userClassPathFirst: 'true'
      spark.jars.packages: com.google.cloud:google-cloud-logging:2.2.0
      spark.num.executors: '2'
  stepId: create_file_try
  parameters:
- name: ARG1
  fields:
  - jobs['create_file_try'].sparkJob.args[0]
- name: ARG2
  fields:
  - jobs['create_file_try'].sparkJob.args[1]
name: projects/My-project-id/regions/europe-west3/workflowTemplates/create_file
updateTime: '2021-08-25T07:49:59.251096Z'
Run Code Online (Sandbox Code Playgroud)

Ric*_*o D 5

为了让您的工作流程模板接受参数,最好使用 yaml 文件。您可以在运行完整命令时获取 yaml 文件gcloud dataproc workflow-templates add-job spark。它将在 CLI 上返回 yaml 配置。

在此示例中,我仅使用了Dataproc 文档中的示例代码,并使用了您的值--properties来进行测试。

project-id注意:在此示例中,我在 yaml 文件中使用了虚拟对象。确保您使用的是实际的project-id,这样就不会遇到任何问题。

命令示例:

gcloud dataproc workflow-templates add-job spark \
--workflow-template=try1 \
--step-id=create_try1 \
--class=org.apache.hadoop.examples.WordCount \
--region=europe-west3 \
--jars=file:///usr/lib/spark/examples/jars/spark-examples.jar \
--properties spark.num.executors=2,spark.executor.cores=3,spark.executor.memory=5g,spark.driver.cores=2,spark.driver.memory=10g,spark.dynamicAllocation.enabled=false,spark.executor.userClassPathFirst=true,spark.driver.userClassPathFirst=true,spark.jars.packages=com.google.cloud:google-cloud-logging:2.2.0 \
-- ARG1 ARG2  
Run Code Online (Sandbox Code Playgroud)

CLI 输出(yaml 配置):

id: try1
jobs:
- sparkJob:
    args:
    - ARG1
    - ARG2
    jarFileUris:
    - file:///usr/lib/spark/examples/jars/spark-examples.jar
    mainClass: org.apache.hadoop.examples.WordCount
    properties:
      spark.driver.cores: '2'
      spark.driver.memory: 10g
      spark.driver.userClassPathFirst: 'true'
      spark.dynamicAllocation.enabled: 'false'
      spark.executor.cores: '3'
      spark.executor.memory: 5g
      spark.executor.userClassPathFirst: 'true'
      spark.jars.packages: com.google.cloud:google-cloud-logging:2.2.0
      spark.num.executors: '2'
  stepId: create_try1
name: projects/your-project-id/regions/europe-west3/workflowTemplates/try1
placement:
  managedCluster:
    clusterName: mycluster
updateTime: '2021-08-25T03:30:47.365244Z'
version: 3
Run Code Online (Sandbox Code Playgroud)

复制生成的 yaml 配置,打开文本编辑器并添加parameters:字段。它将包含您要接受的论点。

parameters:
- name: ARG1
  fields:
  - jobs['create_try1'].sparkJob.args[0] # use the stepId in jobs[], in this example it is 'create_try1'
- name: ARG2
  fields:
  - jobs['create_try1'].sparkJob.args[1]
Run Code Online (Sandbox Code Playgroud)

在此示例中,我将其放置在stepId:.

编辑yaml配置:

id: try1
jobs:
- sparkJob:
    args:
    - ARG1
    - ARG2
    jarFileUris:
    - file:///usr/lib/spark/examples/jars/spark-examples.jar
    mainClass: org.apache.hadoop.examples.WordCount
    properties:
      spark.driver.cores: '2'
      spark.driver.memory: 10g
      spark.driver.userClassPathFirst: 'true'
      spark.dynamicAllocation.enabled: 'false'
      spark.executor.cores: '3'
      spark.executor.memory: 5g
      spark.executor.userClassPathFirst: 'true'
      spark.jars.packages: com.google.cloud:google-cloud-logging:2.2.0
      spark.num.executors: '2'
  stepId: create_try1
parameters:
- name: ARG1
  fields:
  - jobs['create_try1'].sparkJob.args[0]
- name: ARG2
  fields:
  - jobs['create_try1'].sparkJob.args[1]
name: projects/your-project-id/regions/europe-west3/workflowTemplates/try1
placement:
  managedCluster:
    clusterName: mycluster
updateTime: '2021-08-25T03:13:25.014685Z'
version: 3
Run Code Online (Sandbox Code Playgroud)

使用编辑后的 ​​yaml 文件覆盖您的工作流程模板:

gcloud dataproc workflow-templates import try1 \
    --region=europe-west3 \
    --source=config.yaml
Run Code Online (Sandbox Code Playgroud)

使用以下命令运行模板gcloud dataproc workflow-templates instantiate

在此输入图像描述

更多详细信息可以参考工作流模板参数化