pro*_*sql 3 python workflow apache-spark google-cloud-dataproc
我的工作流程有问题spark dataproc。
这在启动时有效:
gcloud dataproc jobs submit spark \
--project myproject \
--cluster=mycluster \
--region=europe-west3 \
--jars=gs:path\file.jar,gs://path//depende.jar \
--class=it.flow \
--properties spark.num.executors=2,spark.executor.cores=3,spark.executor.memory=5g,spark.driver.cores=2,spark.driver.memory=10g,spark.dynamicAllocation.enabled=false,spark.executor.userClassPathFirst=true,spark.driver.userClassPathFirst=true,spark.jars.packages=com.google.cloud:google-cloud-logging:2.2.0
-- 20210820 010000 000 0 000 TRY
Run Code Online (Sandbox Code Playgroud)
我创建了一个 dataproc 工作流程和 python 代码以通过 Composer 启动它并且它可以工作。
现在我必须使最终参数动态化(-- 20210820 010000 000 0 000 TRY)
但是,我无法将参数传递给工作流程:
gcloud dataproc workflow-templates create try1 --region=europe-west3
gcloud dataproc workflow-templates add-job spark \
--workflow-template=try1 \
--step-id=create_try1 \
--class=it.flow \
--region=europe-west3 \
--jars=gs:path\file.jar,gs://path//depende.jar \
--properties spark.num.executors=2,spark.executor.cores=3,spark.executor.memory=5g,spark.driver.cores=2,spark.driver.memory=10g,spark.dynamicAllocation.enabled=false,spark.executor.userClassPathFirst=true,spark.driver.userClassPathFirst=true,spark.jars.packages=com.google.cloud:google-cloud-logging:2.2.0 \
-- $arg1 $arg2
gcloud dataproc workflow-templates set-cluster-selector TRY1 --region=europe-west3 --cluster-labels=goog-dataproc-cluster-name=cluster
Run Code Online (Sandbox Code Playgroud)
这个电话:
gcloud dataproc workflow-templates instantiate TRY1 --region=europe-west3 --parameters="arg1=20210820"
Run Code Online (Sandbox Code Playgroud)
导致以下错误:
错误:(gcloud.dataproc.workflow-templates.instantiate)INVALID_ARGUMENT:模板不包含名称为 arg1 的参数。
我该如何解决这个问题?
yaml 文件
id: create_file
jobs:
- sparkJob:
args:
- ARG1
- ARG2
jarFileUris:
- gs://mybucket/try_file.jar
- gs://mybucket/try_dependencies_2.jar
mainClass: org.apache.hadoop.examples.tryFile
properties:
spark.driver.cores: '2'
spark.driver.memory: 10g
spark.driver.userClassPathFirst: 'true'
spark.dynamicAllocation.enabled: 'false'
spark.executor.cores: '3'
spark.executor.memory: 5g
spark.executor.userClassPathFirst: 'true'
spark.jars.packages: com.google.cloud:google-cloud-logging:2.2.0
spark.num.executors: '2'
stepId: create_file_try
parameters:
- name: ARG1
fields:
- jobs['create_file_try'].sparkJob.args[0]
- name: ARG2
fields:
- jobs['create_file_try'].sparkJob.args[1]
name: projects/My-project-id/regions/europe-west3/workflowTemplates/create_file
updateTime: '2021-08-25T07:49:59.251096Z'
Run Code Online (Sandbox Code Playgroud)
为了让您的工作流程模板接受参数,最好使用 yaml 文件。您可以在运行完整命令时获取 yaml 文件gcloud dataproc workflow-templates add-job spark。它将在 CLI 上返回 yaml 配置。
在此示例中,我仅使用了Dataproc 文档中的示例代码,并使用了您的值--properties来进行测试。
project-id注意:在此示例中,我在 yaml 文件中使用了虚拟对象。确保您使用的是实际的project-id,这样就不会遇到任何问题。
命令示例:
gcloud dataproc workflow-templates add-job spark \
--workflow-template=try1 \
--step-id=create_try1 \
--class=org.apache.hadoop.examples.WordCount \
--region=europe-west3 \
--jars=file:///usr/lib/spark/examples/jars/spark-examples.jar \
--properties spark.num.executors=2,spark.executor.cores=3,spark.executor.memory=5g,spark.driver.cores=2,spark.driver.memory=10g,spark.dynamicAllocation.enabled=false,spark.executor.userClassPathFirst=true,spark.driver.userClassPathFirst=true,spark.jars.packages=com.google.cloud:google-cloud-logging:2.2.0 \
-- ARG1 ARG2
Run Code Online (Sandbox Code Playgroud)
CLI 输出(yaml 配置):
id: try1
jobs:
- sparkJob:
args:
- ARG1
- ARG2
jarFileUris:
- file:///usr/lib/spark/examples/jars/spark-examples.jar
mainClass: org.apache.hadoop.examples.WordCount
properties:
spark.driver.cores: '2'
spark.driver.memory: 10g
spark.driver.userClassPathFirst: 'true'
spark.dynamicAllocation.enabled: 'false'
spark.executor.cores: '3'
spark.executor.memory: 5g
spark.executor.userClassPathFirst: 'true'
spark.jars.packages: com.google.cloud:google-cloud-logging:2.2.0
spark.num.executors: '2'
stepId: create_try1
name: projects/your-project-id/regions/europe-west3/workflowTemplates/try1
placement:
managedCluster:
clusterName: mycluster
updateTime: '2021-08-25T03:30:47.365244Z'
version: 3
Run Code Online (Sandbox Code Playgroud)
复制生成的 yaml 配置,打开文本编辑器并添加parameters:字段。它将包含您要接受的论点。
parameters:
- name: ARG1
fields:
- jobs['create_try1'].sparkJob.args[0] # use the stepId in jobs[], in this example it is 'create_try1'
- name: ARG2
fields:
- jobs['create_try1'].sparkJob.args[1]
Run Code Online (Sandbox Code Playgroud)
在此示例中,我将其放置在stepId:.
编辑yaml配置:
id: try1
jobs:
- sparkJob:
args:
- ARG1
- ARG2
jarFileUris:
- file:///usr/lib/spark/examples/jars/spark-examples.jar
mainClass: org.apache.hadoop.examples.WordCount
properties:
spark.driver.cores: '2'
spark.driver.memory: 10g
spark.driver.userClassPathFirst: 'true'
spark.dynamicAllocation.enabled: 'false'
spark.executor.cores: '3'
spark.executor.memory: 5g
spark.executor.userClassPathFirst: 'true'
spark.jars.packages: com.google.cloud:google-cloud-logging:2.2.0
spark.num.executors: '2'
stepId: create_try1
parameters:
- name: ARG1
fields:
- jobs['create_try1'].sparkJob.args[0]
- name: ARG2
fields:
- jobs['create_try1'].sparkJob.args[1]
name: projects/your-project-id/regions/europe-west3/workflowTemplates/try1
placement:
managedCluster:
clusterName: mycluster
updateTime: '2021-08-25T03:13:25.014685Z'
version: 3
Run Code Online (Sandbox Code Playgroud)
使用编辑后的 yaml 文件覆盖您的工作流程模板:
gcloud dataproc workflow-templates import try1 \
--region=europe-west3 \
--source=config.yaml
Run Code Online (Sandbox Code Playgroud)
使用以下命令运行模板gcloud dataproc workflow-templates instantiate:
更多详细信息可以参考工作流模板参数化。
| 归档时间: |
|
| 查看次数: |
1419 次 |
| 最近记录: |