The*_*Guy 7 python sorting concatenation dataframe pandas
我有以下两个数据框:
>>> df1
c1 c2 v1 v2
0 A NaN 9 2
1 B NaN 2 5
2 C NaN 3 5
3 D NaN 4 2
>>> df2
c1 c2 v1 v2
0 A P 4 1
1 A T 3 1
2 A Y 2 0
3 B P 0 1
4 B T 2 2
5 B Y 0 2
6 C P 1 2
7 C T 1 2
8 C Y 1 1
9 D P 1 1
10 D T 2 0
11 D Y 1 1
Run Code Online (Sandbox Code Playgroud)
我需要连接数据帧并对它们进行排序,反之亦然。第一个数据帧需要按列进行排序v1,然后需要根据对 c1第一个数据帧进行排序后列中的值的顺序以及v2第二个数据帧中的列对第二个数据帧进行排序。
工作版本是这样的:对第一个数据帧进行排序v1,然后迭代行,过滤第二个数据帧的列值c2,并对过滤后的第二个数据帧进行排序v2,最后连接所有帧。
result = []
for i,row in df1.sort_values('v1').iterrows():
result.append(row.to_frame().T)
result.append(df2[df2['c1'].eq(row['c1'])].sort_values('v2'))
Run Code Online (Sandbox Code Playgroud)
排序后得到的数据框:
>>> pd.concat(result, ignore_index=True)
c1 c2 v1 v2
0 B NaN 2 5
1 B P 0 1
2 B T 2 2
3 B Y 0 2
4 C NaN 3 5
5 C Y 1 1
6 C P 1 2
7 C T 1 2
8 D NaN 4 2
9 D T 2 0
10 D P 1 1
11 D Y 1 1
12 A NaN 9 2
13 A Y 2 0
14 A P 4 1
15 A T 3 1
Run Code Online (Sandbox Code Playgroud)
上述方法的问题在于其迭代,并且当数据帧的数量增加和/或这些数据帧中的行数增加时效率不高。真实的用例场景有 2 到 6 个数据帧,其中行数从几千到几十万不等。
首先对数据帧进行排序然后连接它们,或者先连接数据帧然后进行排序都可以,这就是为什么我只包含两个数据帧而不是仅仅连接它们并呈现单个数据帧。
以下是来自实际用例场景的 4 个数据帧:
from math import nan
import pandas as pd
df4 = pd.DataFrame({'c1': ['BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT'], 'c2': ['D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'D1', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'Sc', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w1', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2', 'w2'], 'c3': ['BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH', 'BAF', 'BAF', 'BAF', 'BAF', 'BAF', 'WH', 'WH', 'WH', 'WH', 'WH'], 'c4': ['001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss', '001', '002', '003', '004', 'mss'], 'v1': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 0, 2, 4, 6, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 0, 2, 4, 6, 4, 0, 2, 2, 0, 2, 0, 2, 4, 6, 4, 0, 2, 2, 0, 1, 0, 2, 3, 6, 2, 0, 2, 2, 0, 1, 0, 1, 3, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 0, 2, 4, 6, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 0, 2, 4, 6, 4, 0, 2, 2, 0, 2, 0, 2, 4, 6, 4, 0, 2, 2, 0, 1, 0, 2, 3, 6, 2, 0, 2, 2, 0, 1, 0, 1, 3, 5, 1, 0, 2, 2, 0, 2, 0, 2, 4, 6, 4, 0, 2, 2, 0, 2, 0, 2, 4, 6, 4, 0, 2, 2, 0, 1, 0, 2, 3, 6, 2, 0, 2, 2, 0, 1, 0, 1, 3, 5, 1, 0], 'v2': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 4, 6, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 4, 6, 5, 0, 0, 1, 0, 1, 0, 2, 4, 6, 5, 0, 0, 0, 0, 1, 0, 2, 3, 5, 4, 0, 0, 0, 0, 1, 0, 1, 3, 5, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 4, 6, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 4, 6, 5, 0, 0, 1, 0, 1, 0, 2, 4, 6, 5, 0, 0, 0, 0, 1, 0, 2, 3, 5, 4, 0, 0, 0, 0, 1, 0, 1, 3, 5, 3, 0, 0, 1, 0, 1, 0, 2, 4, 6, 5, 0, 0, 1, 0, 1, 0, 2, 4, 6, 5, 0, 0, 0, 0, 1, 0, 2, 3, 5, 4, 0, 0, 0, 0, 1, 0, 1, 3, 5, 3, 0], 'v3': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 5, 9, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 5, 9, 7, 0, 1, 2, 1, 0, 0, 1, 5, 9, 7, 0, 1, 2, 1, 0, 0, 0, 4, 6, 4, 0, 1, 2, 1, 0, 0, 0, 2, 6, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 5, 9, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 5, 9, 7, 0, 1, 2, 1, 0, 0, 1, 5, 9, 7, 0, 1, 2, 1, 0, 0, 0, 4, 6, 4, 0, 1, 2, 1, 0, 0, 0, 2, 6, 3, 0, 1, 2, 1, 0, 0, 1, 5, 9, 7, 0, 1, 2, 1, 0, 0, 1, 5, 9, 7, 0, 1, 2, 1, 0, 0, 0, 4, 6, 4, 0, 1, 2, 1, 0, 0, 0, 2, 6, 3, 0], 'v4': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 1, 3, 0, 5, 13, 21, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 1, 3, 0, 5, 13, 21, 16, 0, 3, 5, 1, 3, 0, 5, 13, 21, 16, 0, 3, 4, 1, 2, 0, 4, 10, 17, 10, 0, 3, 4, 1, 2, 0, 2, 8, 16, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 1, 3, 0, 5, 13, 21, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 1, 3, 0, 5, 13, 21, 16, 0, 3, 5, 1, 3, 0, 5, 13, 21, 16, 0, 3, 4, 1, 2, 0, 4, 10, 17, 10, 0, 3, 4, 1, 2, 0, 2, 8, 16, 7, 0, 3, 5, 1, 3, 0, 5, 13, 21, 16, 0, 3, 5, 1, 3, 0, 5, 13, 21, 16, 0, 3, 4, 1, 2, 0, 4, 10, 17, 10, 0, 3, 4, 1, 2, 0, 2, 8, 16, 7, 0]})
df3 = pd.DataFrame({'c1': ['BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT'], 'c2': ['D1', 'D1', 'D1', 'Sc', 'Sc', 'Sc', 'w1', 'w1', 'w1', 'w2', 'w2', 'w2', 'D1', 'D1', 'D1', 'Sc', 'Sc', 'Sc', 'w1', 'w1', 'w1', 'w2', 'w2', 'w2', 'D1', 'D1', 'D1', 'Sc', 'Sc', 'Sc', 'w1', 'w1', 'w1', 'w2', 'w2', 'w2', 'D1', 'D1', 'D1', 'Sc', 'Sc', 'Sc', 'w1', 'w1', 'w1', 'w2', 'w2', 'w2', 'D1', 'D1', 'D1', 'Sc', 'Sc', 'Sc', 'w1', 'w1', 'w1', 'w2', 'w2', 'w2'], 'c3': ['BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss', 'BAF', 'WH', 'mss'], 'c4': [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], 'v1': [0, 0, 0, 6, 16, 0, 0, 0, 0, 0, 0, 0, 6, 16, 0, 6, 16, 0, 5, 13, 0, 5, 10, 0, 0, 0, 0, 6, 16, 0, 0, 0, 0, 0, 0, 0, 6, 16, 0, 6, 16, 0, 5, 13, 0, 5, 10, 0, 6, 16, 0, 6, 16, 0, 5, 13, 0, 5, 10, 0], 'v2': [0, 0, 0, 2, 17, 0, 0, 0, 0, 0, 0, 0, 2, 17, 0, 2, 17, 0, 1, 14, 0, 1, 12, 0, 0, 0, 0, 2, 17, 0, 0, 0, 0, 0, 0, 0, 2, 17, 0, 2, 17, 0, 1, 14, 0, 1, 12, 0, 2, 17, 0, 2, 17, 0, 1, 14, 0, 1, 12, 0], 'v3': [0, 0, 0, 4, 22, 0, 0, 0, 0, 0, 0, 0, 4, 22, 0, 4, 22, 0, 4, 14, 0, 4, 11, 0, 0, 0, 0, 4, 22, 0, 0, 0, 0, 0, 0, 0, 4, 22, 0, 4, 22, 0, 4, 14, 0, 4, 11, 0, 4, 22, 0, 4, 22, 0, 4, 14, 0, 4, 11, 0], 'v4': [0, 0, 0, 12, 55, 0, 0, 0, 0, 0, 0, 0, 12, 55, 0, 12, 55, 0, 10, 41, 0, 10, 33, 0, 0, 0, 0, 12, 55, 0, 0, 0, 0, 0, 0, 0, 12, 55, 0, 12, 55, 0, 10, 41, 0, 10, 33, 0, 12, 55, 0, 12, 55, 0, 10, 41, 0, 10, 33, 0]})
df2 = pd.DataFrame({'c1': ['BMI', 'BMI', 'BMI', 'BMI', 'BMI', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'DIABP', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'HEIGHT', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'SYSBP', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT', 'WEIGHT'], 'c2': ['D1', 'Sc', 'w1', 'w2', 'mss', 'D1', 'Sc', 'w1', 'w2', 'mss', 'D1', 'Sc', 'w1', 'w2', 'mss', 'D1', 'Sc', 'w1', 'w2', 'mss', 'D1', 'Sc', 'w1', 'w2', 'mss'], 'c3': [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], 'c4': [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], 'v1': [0, 22, 0, 0, 0, 22, 22, 18, 15, 0, 0, 22, 0, 0, 0, 22, 22, 18, 15, 0, 22, 22, 18, 15, 0], 'v2': [0, 19, 0, 0, 0, 19, 19, 15, 13, 0, 0, 19, 0, 0, 0, 19, 19, 15, 13, 0, 19, 19, 15, 13, 0], 'v3': [0, 26, 0, 0, 0, 26, 26, 18, 15, 0, 0, 26, 0, 0, 0, 26, 26, 18, 15, 0, 26, 26, 18, 15, 0], 'v4': [0, 67, 0, 0, 0, 67, 67, 51, 43, 0, 0, 67, 0, 0, 0, 67, 67, 51, 43, 0, 67, 67, 51, 43, 0]})
df1 = pd.DataFrame({'c1': ['BMI', 'DIABP', 'HEIGHT', 'SYSBP', 'WEIGHT', 'mss'], 'c2': [nan, nan, nan, nan, nan, nan], 'c3': [nan, nan, nan, nan, nan, nan], 'c4': [nan, nan, nan, nan, nan, nan], 'v1': [22, 22, 22, 22, 22, 0], 'v2': [19, 19, 19, 19, 19, 0], 'v3': [26, 26, 26, 26, 26, 0], 'v4': [67, 67, 67, 67, 67, 0]})
# Comment for easy code selection
Run Code Online (Sandbox Code Playgroud)
即使对于上述四个数据帧,排序和合并标准仍然相同
在这种情况下,当要排序和合并的数据帧数量增加时,我上面使用的解决方案变得非常低效。
另一种不使用排序组的解决方案groupby:
import itertools
out = pd.concat([df1.sort_values('v1'),
df2.sort_values('v2')],
ignore_index=True)
Run Code Online (Sandbox Code Playgroud)
# Original answer
# >>> out.reindex(out.groupby('c1', sort=False)
# .apply(lambda x: x.index)
# .explode())
# Faster alternative
>>> out.loc[itertools.chain.from_iterable(out.groupby('c1', sort=False)
.groups.values())]
Run Code Online (Sandbox Code Playgroud)
>>> out
c1 c2 v1 v2
0 B NaN 2 5
8 B P 0 1
12 B T 2 2
13 B Y 0 2
1 C NaN 3 5
9 C Y 1 1
14 C P 1 2
15 C T 1 2
2 D NaN 4 2
5 D T 2 0
10 D P 1 1
11 D Y 1 1
3 A NaN 9 2
4 A Y 2 0
6 A P 4 1
7 A T 3 1
Run Code Online (Sandbox Code Playgroud)