如何将fastapi部署到google cloud run

Dou*_*ett 1 python buildpack gcloud google-cloud-run fastapi

我有一个 fastapi 应用程序,我想将其部署到 google cloud run。

对于 gRPC python 项目,我们将其部署为

gcloud beta run deploy countries --source .
Run Code Online (Sandbox Code Playgroud)

但这并没有按预期部署。我观看了一个使用Google cloud buildpacks从源代码部署的视频。

有没有人有办法做到这一点?

我的代码就像


from typing import List
import geopandas as gpd
from fastapi import FastAPI
from geojson_pydantic.geometries import Geometry
from geojson_pydantic.features import Feature
from pydantic import BaseModel
from shapely.geometry.geo import shape
import json
import shapely

class Country(BaseModel):
    name: str
    code: str
    type: str
    geometry: Feature


app = FastAPI(
    title="Natural Earth Countries",
    description="This is a list of endpoints which you can use to access natural earth data.",
    version="0.0.1",
    docs_url='/',
)

gdf = gpd.read_file('data/ne_110m_admin_0_countries.zip')
gdf['name'] = gdf['ADMIN'].apply(lambda x: x.lower())

@app.get('/countries/all')
def get_all_countries() -> List[Country]:
    return rows_to_countries(gdf)


@app.get('/countries/search/{name}')
def search_countries(name: str):
    name = name.lower()
    subset = gdf.loc[gdf["name"].str.contains(name)]
    return rows_to_countries(subset)

@app.get('/countries/within-boundary')
def countries_intersecting(boundary: Geometry):
    bounds = shape(boundary)
    subset = gdf.loc[gdf.intersects(bounds)]
    return rows_to_countries(subset)


def row_to_country(row):
    return Country(
        name=row["ADMIN"],
        type=row["TYPE"],
        geometry=Feature(geometry=row['geometry']),
        code=row["ADM0_A3"],
    )


def rows_to_countries(gdf):
    return [row_to_country(row) for _, row in gdf.iterrows()]

Run Code Online (Sandbox Code Playgroud)

感谢你的帮助

Dou*_*ett 7

我找到的解决方案是创建一个 Dockerfile

FROM tiangolo/uvicorn-gunicorn-fastapi:python3.8

ENV APP_HOME /app

WORKDIR $APP_HOME
COPY . ./

RUN pip install -r requirements.txt

CMD exec gunicorn --bind :$PORT --workers 1 --worker-class uvicorn.workers.UvicornWorker  --threads 8 main:app

Run Code Online (Sandbox Code Playgroud)

然后运行

FROM tiangolo/uvicorn-gunicorn-fastapi:python3.8

ENV APP_HOME /app

WORKDIR $APP_HOME
COPY . ./

RUN pip install -r requirements.txt

CMD exec gunicorn --bind :$PORT --workers 1 --worker-class uvicorn.workers.UvicornWorker  --threads 8 main:app

Run Code Online (Sandbox Code Playgroud)

然后将图像提交到gcloud后,运行

gcloud run deploy --image gcr.io/bitnami-oyzgng8y5a/countries_fastapi --platform managed
Run Code Online (Sandbox Code Playgroud)

  • @cory 我还认为直接运行单个 uvicorn 工作线程对于 Cloud Run 的工作方式会更好。 (2认同)