将级别 2 索引添加为具有条件的其他索引的总和

Jon*_*nis 5 python indexing pandas

我有一个df

df = pd.DataFrame.from_dict({('group', ''): {0: 'A',
  1: 'A',
  2: 'A',
  3: 'A',
  4: 'A',
  5: 'A',
  6: 'A',
  7: 'A',
  8: 'A',
  9: 'B',
  10: 'B',
  11: 'B',
  12: 'B',
  13: 'B',
  14: 'B',
  15: 'B',
  16: 'B',
  17: 'B',
  18: 'all',
  19: 'all'},
 ('category', ''): {0: 'Amazon',
  1: 'Apple',
  2: 'Facebook',
  3: 'Google',
  4: 'Netflix',
  5: 'Tesla',
  6: 'Total',
  7: 'Uber',
  8: 'total',
  9: 'Amazon',
  10: 'Apple',
  11: 'Facebook',
  12: 'Google',
  13: 'Netflix',
  14: 'Tesla',
  15: 'Total',
  16: 'Uber',
  17: 'total',
  18: 'Total',
  19: 'total'},
 (pd.Timestamp('2020-06-29 00:00:00'), 'last_sales'): {0: 195.0,
  1: 61.0,
  2: 106.0,
  3: 61.0,
  4: 37.0,
  5: 13.0,
  6: 954.0,
  7: 4.0,
  8: 477.0,
  9: 50.0,
  10: 50.0,
  11: 75.0,
  12: 43.0,
  13: 17.0,
  14: 14.0,
  15: 504.0,
  16: 3.0,
  17: 252.0,
  18: 2916.0,
  19: 2916.0},
 (pd.Timestamp('2020-06-29 00:00:00'), 'sales'): {0: 1268.85,
  1: 18274.385000000002,
  2: 19722.65,
  3: 55547.255,
  4: 15323.800000000001,
  5: 1688.6749999999997,
  6: 227463.23,
  7: 1906.0,
  8: 113731.615,
  9: 3219.6499999999996,
  10: 15852.060000000001,
  11: 17743.7,
  12: 37795.15,
  13: 5918.5,
  14: 1708.75,
  15: 166349.64,
  16: 937.01,
  17: 83174.82,
  18: 787625.7400000001,
  19: 787625.7400000001},
 (pd.Timestamp('2020-06-29 00:00:00'), 'difference'): {0: 0.0,
  1: 0.0,
  2: 0.0,
  3: 0.0,
  4: 0.0,
  5: 0.0,
  6: 0.0,
  7: 0.0,
  8: 0.0,
  9: 0.0,
  10: 0.0,
  11: 0.0,
  12: 0.0,
  13: 0.0,
  14: 0.0,
  15: 0.0,
  16: 0.0,
  17: 0.0,
  18: 0.0,
  19: 0.0},
 (pd.Timestamp('2020-07-06 00:00:00'), 'last_sales'): {0: 26.0,
  1: 39.0,
  2: 79.0,
  3: 49.0,
  4: 10.0,
  5: 10.0,
  6: 436.0,
  7: 5.0,
  8: 218.0,
  9: 89.0,
  10: 34.0,
  11: 133.0,
  12: 66.0,
  13: 21.0,
  14: 20.0,
  15: 732.0,
  16: 3.0,
  17: 366.0,
  18: 2336.0,
  19: 2336.0},
 (pd.Timestamp('2020-07-06 00:00:00'), 'sales'): {0: 3978.15,
  1: 12138.96,
  2: 19084.175,
  3: 40033.46000000001,
  4: 4280.15,
  5: 1495.1,
  6: 165548.29,
  7: 1764.15,
  8: 82774.145,
  9: 8314.92,
  10: 12776.649999999996,
  11: 28048.075,
  12: 55104.21000000002,
  13: 6962.844999999999,
  14: 3053.2000000000003,
  15: 231049.11000000002,
  16: 1264.655,
  17: 115524.55500000001,
  18: 793194.8000000002,
  19: 793194.8000000002},
 (pd.Timestamp('2020-07-06 00:00:00'), 'difference'): {0: 0.0,
  1: 0.0,
  2: 0.0,
  3: 0.0,
  4: 0.0,
  5: 0.0,
  6: 0.0,
  7: 0.0,
  8: 0.0,
  9: 0.0,
  10: 0.0,
  11: 0.0,
  12: 0.0,
  13: 0.0,
  14: 0.0,
  15: 0.0,
  16: 0.0,
  17: 0.0,
  18: 0.0,
  19: 0.0},
 (pd.Timestamp('2021-06-28 00:00:00'), 'last_sales'): {0: 96.0,
  1: 56.0,
  2: 106.0,
  3: 44.0,
  4: 34.0,
  5: 13.0,
  6: 716.0,
  7: 9.0,
  8: 358.0,
  9: 101.0,
  10: 22.0,
  11: 120.0,
  12: 40.0,
  13: 13.0,
  14: 8.0,
  15: 610.0,
  16: 1.0,
  17: 305.0,
  18: 2652.0,
  19: 2652.0},
 (pd.Timestamp('2021-06-28 00:00:00'), 'sales'): {0: 5194.95,
  1: 19102.219999999994,
  2: 22796.420000000002,
  3: 30853.115,
  4: 11461.25,
  5: 992.6,
  6: 188143.41,
  7: 3671.15,
  8: 94071.705,
  9: 6022.299999999998,
  10: 7373.6,
  11: 33514.0,
  12: 35943.45,
  13: 4749.000000000001,
  14: 902.01,
  15: 177707.32,
  16: 349.3,
  17: 88853.66,
  18: 731701.46,
  19: 731701.46},
 (pd.Timestamp('2021-06-28 00:00:00'), 'difference'): {0: 0.0,
  1: 0.0,
  2: 0.0,
  3: 0.0,
  4: 0.0,
  5: 0.0,
  6: 0.0,
  7: 0.0,
  8: 0.0,
  9: 0.0,
  10: 0.0,
  11: 0.0,
  12: 0.0,
  13: 0.0,
  14: 0.0,
  15: 0.0,
  16: 0.0,
  17: 0.0,
  18: 0.0,
  19: 0.0},
 (pd.Timestamp('2021-07-07 00:00:00'), 'last_sales'): {0: 45.0,
  1: 47.0,
  2: 87.0,
  3: 45.0,
  4: 13.0,
  5: 8.0,
  6: 494.0,
  7: 2.0,
  8: 247.0,
  9: 81.0,
  10: 36.0,
  11: 143.0,
  12: 56.0,
  13: 9.0,
  14: 9.0,
  15: 670.0,
  16: 1.0,
  17: 335.0,
  18: 2328.0,
  19: 2328.0},
 (pd.Timestamp('2021-07-07 00:00:00'), 'sales'): {0: 7556.414999999998,
  1: 14985.05,
  2: 16790.899999999998,
  3: 36202.729999999996,
  4: 4024.97,
  5: 1034.45,
  6: 163960.32999999996,
  7: 1385.65,
  8: 81980.16499999998,
  9: 5600.544999999999,
  10: 11209.92,
  11: 32832.61,
  12: 42137.44500000001,
  13: 3885.1499999999996,
  14: 1191.5,
  15: 194912.34000000003,
  16: 599.0,
  17: 97456.17000000001,
  18: 717745.3400000001,
  19: 717745.3400000001},
 (pd.Timestamp('2021-07-07 00:00:00'), 'difference'): {0: 0.0,
  1: 0.0,
  2: 0.0,
  3: 0.0,
  4: 0.0,
  5: 0.0,
  6: 0.0,
  7: 0.0,
  8: 0.0,
  9: 0.0,
  10: 0.0,
  11: 0.0,
  12: 0.0,
  13: 0.0,
  14: 0.0,
  15: 0.0,
  16: 0.0,
  17: 0.0,
  18: 0.0,
  19: 0.0}}).set_index(['group','category'])
Run Code Online (Sandbox Code Playgroud)

我正在尝试创建一个index名为2 的级别combined,它将是除and /之外sales & last_sales的所有内容的总和。这样看起来像这样:categoriesFacebooktotalTotaldf

在此处输入图片说明

我尝试这样做,.loc但没有成功:

s = df_out.stack(0)

s['combined'] = 0
s.loc[(slice(None),[x for x in s.loc[(slice(None),:) if x != 'Facebook']].sum()
Run Code Online (Sandbox Code Playgroud)

Shu*_*rma 4

解决方案

  • 放入,类似地,all将其他不需要的级别值放入level=0droplevel=1
  • 计算聚合帧的sumonlevel=0
  • 创建以在聚合框架中Multindex添加附加级别combined
  • 对索引进行追加和排序以维持顺序
s = df.drop('all').drop(['Facebook', 'total', 'Total'], level=1).sum(level=0)
s.index = pd.MultiIndex.from_product([s.index, ['combined']])
df_out = df.append(s).sort_index()
Run Code Online (Sandbox Code Playgroud)

结果

                        2020-06-29 00:00:00                        2020-07-06 00:00:00                        2021-06-28 00:00:00                        2021-07-07 00:00:00                       
                        last_sales       sales difference          last_sales       sales difference          last_sales       sales difference          last_sales       sales difference
group category                                                                                                                                                                            
A     Amazon                 195.0    1268.850        0.0                26.0    3978.150        0.0                96.0    5194.950        0.0                45.0    7556.415        0.0
      Apple                   61.0   18274.385        0.0                39.0   12138.960        0.0                56.0   19102.220        0.0                47.0   14985.050        0.0
      Facebook               106.0   19722.650        0.0                79.0   19084.175        0.0               106.0   22796.420        0.0                87.0   16790.900        0.0
      Google                  61.0   55547.255        0.0                49.0   40033.460        0.0                44.0   30853.115        0.0                45.0   36202.730        0.0
      Netflix                 37.0   15323.800        0.0                10.0    4280.150        0.0                34.0   11461.250        0.0                13.0    4024.970        0.0
      Tesla                   13.0    1688.675        0.0                10.0    1495.100        0.0                13.0     992.600        0.0                 8.0    1034.450        0.0
      Total                  954.0  227463.230        0.0               436.0  165548.290        0.0               716.0  188143.410        0.0               494.0  163960.330        0.0
      Uber                     4.0    1906.000        0.0                 5.0    1764.150        0.0                 9.0    3671.150        0.0                 2.0    1385.650        0.0
      combined               371.0   94008.965        0.0               139.0   63689.970        0.0               252.0   71275.285        0.0               160.0   65189.265        0.0
      total                  477.0  113731.615        0.0               218.0   82774.145        0.0               358.0   94071.705        0.0               247.0   81980.165        0.0
B     Amazon                  50.0    3219.650        0.0                89.0    8314.920        0.0               101.0    6022.300        0.0                81.0    5600.545        0.0
      Apple                   50.0   15852.060        0.0                34.0   12776.650        0.0                22.0    7373.600        0.0                36.0   11209.920        0.0
      Facebook                75.0   17743.700        0.0               133.0   28048.075        0.0               120.0   33514.000        0.0               143.0   32832.610        0.0
      Google                  43.0   37795.150        0.0                66.0   55104.210        0.0                40.0   35943.450        0.0                56.0   42137.445        0.0
      Netflix                 17.0    5918.500        0.0                21.0    6962.845        0.0                13.0    4749.000        0.0                 9.0    3885.150        0.0
      Tesla                   14.0    1708.750        0.0                20.0    3053.200        0.0                 8.0     902.010        0.0                 9.0    1191.500        0.0
      Total                  504.0  166349.640        0.0               732.0  231049.110        0.0               610.0  177707.320        0.0               670.0  194912.340        0.0
      Uber                     3.0     937.010        0.0                 3.0    1264.655        0.0                 1.0     349.300        0.0                 1.0     599.000        0.0
      combined               177.0   65431.120        0.0               233.0   87476.480        0.0               185.0   55339.660        0.0               192.0   64623.560        0.0
      total                  252.0   83174.820        0.0               366.0  115524.555        0.0               305.0   88853.660        0.0               335.0   97456.170        0.0
all   Total                 2916.0  787625.740        0.0              2336.0  793194.800        0.0              2652.0  731701.460        0.0              2328.0  717745.340        0.0
      total                 2916.0  787625.740        0.0              2336.0  793194.800        0.0              2652.0  731701.460        0.0              2328.0  717745.340        0.0
Run Code Online (Sandbox Code Playgroud)