APC*_*APC 6 python opencv image-processing counting computer-vision
我正在尝试数一群蟋蟀(昆虫)的数量。我将使用 openCV 库的图像处理方法。当农民出售蟋蟀时,这将提供更准确的练习。这张照片是用智能手机拍摄的。不幸的是,结果并不如预期。由于大多数蟋蟀彼此重叠,我的代码无法将它们分开,从而导致计数不正确。
我应该采用什么方法来解决这个问题?我的代码有问题吗?
蟋蟀图像
这是我的代码。
import cv2
import numpy as np
img = cv2.imread("c1.jpg",1)
roi=img[0:1500,0:1100]
gray = cv2.cvtColor(roi,cv2.COLOR_BGR2GRAY)
gray_blur=cv2.GaussianBlur(gray,(15,15),0)
thresh = cv2.adaptiveThreshold(gray_blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,11,1)
kernel=np.ones((1,1),np.uint8)
closing=cv2.morphologyEx(thresh,cv2.MORPH_CLOSE,kernel,iterations=10)
result_img=closing.copy()
contours,hierachy=cv2.findContours(result_img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
counter=0
for cnt in contours:
area = cv2.contourArea(cnt)
if area < 150 :
#if area< 300 :
continue
counter+=1
ellipse = cv2.fitEllipse(cnt)
cv2.ellipse(roi,ellipse,(0,255,0),1)
cv2.putText(roi,"Crickets="+str(counter),(100,70),cv2.FONT_HERSHEY_SIMPLEX,1,(255,0,0),1,cv2.LINE_AA)
cv2.imshow('ImageOfCrickets',roi)
#cv2.imshow('ImageOfGray',gray)
#cv2.imshow('ImageOfGray_blur',gray_blur)
#cv2.imshow('ImageOfThreshold',thresh)
#cv2.imshow('ImageOfMorphology',closing)
print('Crickets = '+ str(counter))
cv2.waitKey(0)
cv2.destroyAllWindows()
Run Code Online (Sandbox Code Playgroud)
现在,我使用闭合形态学和轮廓层次结构来实现椭圆形状方法。
这是一个选项。使用自适应阈值,执行侵蚀/扩张和高斯模糊,然后进行轮廓,然后按大小和纵横比对其进行过滤,最后找到每个过滤轮廓的质心。
import cv2
# Load the image
img = cv2.imread('insects.jpg')
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray,(3,3),2)
# Threshold the grayscale image
thresh = cv2.adaptiveThreshold(gray,300,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,85,-21)
# # Perform morphological operations
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9,9))
thresh = cv2.erode(thresh, kernel, iterations=2)
thresh = cv2.dilate(thresh, kernel, iterations=1)
thresh = cv2.GaussianBlur(thresh, (3,3), 1)
# Find contours
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
print(contours)
# Filter contours by area and aspect ratio
min_area = 500 # minimum area of contour
max_area = 10000 # maximum area of contour
min_aspect_ratio = 0.3 # minimum aspect ratio of contour
max_aspect_ratio = 3 # maximum aspect ratio of contour
filtered_contours = []
for contour in contours:
area = cv2.contourArea(contour)
x, y, w, h = cv2.boundingRect(contour)
aspect_ratio = float(w) / h if h != 0 else 0
if area >= min_area and area <= max_area and aspect_ratio >= min_aspect_ratio and aspect_ratio <= max_aspect_ratio:
filtered_contours.append(contour)
print(contour)
# Compute centers of mass and draw circles for filtered contours
for contour in filtered_contours:
# Compute moments of the contour
M = cv2.moments(contour)
if M['m00'] != 0:
# Compute center of mass
cx = int(M['m10'] / M['m00'])
cy = int(M['m01'] / M['m00'])
# Draw circle at center of mass
cv2.circle(img, (cx, cy), 5, (0, 255, 0), -1)
# Show the original image with filtered contours
cv2.drawContours(img, filtered_contours, -1, (0, 0, 255), 2)
cv2.imwrite('Image_contours.jpg', img)
cv2.imshow('Gray', gray)
cv2.imwrite('image_thresholded_preprocessed.jpg', thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()
Run Code Online (Sandbox Code Playgroud)
另一种选择与此处所做的类似:
这些图像是经过阈值处理的(不是昆虫是白色的),以及带有中心的轮廓(红点)。现实中不是很好,但我能想到的最好的。看起来工作量很大,但解决误报(在空白处)的方法可能是进行第二次处理,取出质心不暗的轮廓。
| 归档时间: |
|
| 查看次数: |
748 次 |
| 最近记录: |