hac*_*iko 10 bootstrapping regression r purrr
一直在练习 mtcars 数据集。
我用线性模型创建了这个图。
library(tidyverse)
library(tidymodels)
ggplot(data = mtcars, aes(x = wt, y = mpg)) +
geom_point() + geom_smooth(method = 'lm')
Run Code Online (Sandbox Code Playgroud)
然后我将数据帧转换为长数据帧,以便我可以尝试 facet_wrap。
mtcars_long_numeric <- mtcars %>%
select(mpg, disp, hp, drat, wt, qsec)
mtcars_long_numeric <- pivot_longer(mtcars_long_numeric, names_to = 'names', values_to = 'values', 2:6)
Run Code Online (Sandbox Code Playgroud)
现在我想了解一些关于 geom_smooth 的标准误差,看看我是否可以使用引导生成置信区间。
我在此链接的 RStudio 整洁模型文档中找到了此代码。
boots <- bootstraps(mtcars, times = 250, apparent = TRUE)
boots
fit_nls_on_bootstrap <- function(split) {
lm(mpg ~ wt, analysis(split))
}
boot_models <-
boots %>%
dplyr::mutate(model = map(splits, fit_nls_on_bootstrap),
coef_info = map(model, tidy))
boot_coefs <-
boot_models %>%
unnest(coef_info)
percentile_intervals <- int_pctl(boot_models, coef_info)
percentile_intervals
ggplot(boot_coefs, aes(estimate)) +
geom_histogram(bins = 30) +
facet_wrap( ~ term, scales = "free") +
labs(title="", subtitle = "mpg ~ wt - Linear Regression Bootstrap Resampling") +
theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
theme(plot.subtitle = element_text(hjust = 0.5)) +
labs(caption = "95% Confidence Interval Parameter Estimates, Intercept + Estimate") +
geom_vline(aes(xintercept = .lower), data = percentile_intervals, col = "blue") +
geom_vline(aes(xintercept = .upper), data = percentile_intervals, col = "blue")
boot_aug <-
boot_models %>%
sample_n(50) %>%
mutate(augmented = map(model, augment)) %>%
unnest(augmented)
ggplot(boot_aug, aes(wt, mpg)) +
geom_line(aes(y = .fitted, group = id), alpha = .3, col = "blue") +
geom_point(alpha = 0.005) +
# ylim(5,25) +
labs(title="", subtitle = "mpg ~ wt \n Linear Regression Bootstrap Resampling") +
theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
theme(plot.subtitle = element_text(hjust = 0.5)) +
labs(caption = "coefficient stability testing")
Run Code Online (Sandbox Code Playgroud)
有什么方法可以将引导回归作为 facet_wrap 吗?我尝试将长数据帧放入 bootstraps 函数中。.
boots <- bootstraps(mtcars_long_numeric, times = 250, apparent = TRUE)
boots
fit_nls_on_bootstrap <- function(split) {
group_by(names) %>%
lm(mpg ~ values, analysis(split))
}
Run Code Online (Sandbox Code Playgroud)
但这不起作用。
或者我尝试在此处添加 group_by :
boot_models <-
boots %>%
group_by(names) %>%
dplyr::mutate(model = map(splits, fit_nls_on_bootstrap),
coef_info = map(model, tidy))
Run Code Online (Sandbox Code Playgroud)
这不起作用,因为 boots$names 不存在。我也无法在 boot_aug 中将分组添加为 facet_wrap,因为那里不存在名称。
ggplot(boot_aug, aes(values, mpg)) +
geom_line(aes(y = .fitted, group = id), alpha = .3, col = "blue") +
facet_wrap(~names) +
geom_point(alpha = 0.005) +
# ylim(5,25) +
labs(title="", subtitle = "mpg ~ wt \n Linear Regression Bootstrap Resampling") +
theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
theme(plot.subtitle = element_text(hjust = 0.5)) +
labs(caption = "coefficient stability testing")
Run Code Online (Sandbox Code Playgroud)
此外,我还了解到我也不能通过 ~id 进行 facet_wrap。我最终得到了一个看起来像这样的图表,它非常难以阅读!我真的很想在诸如“wt”、“disp”、“qsec”之类的东西上使用 facet_wrap 而不是在每个引导程序本身上。
这是我使用的代码略高于我的体重的情况之一 - 希望得到任何建议。
这是我希望按预期输出的图像。除了标准误差的阴影区域之外,我希望看到自举回归模型或多或少占据相同区域。
如果你想坚持使用 tidyverse,这样的东西可能会起作用:
library(dplyr)
library(tidyr)
library(purrr)
library(ggplot2)
library(broom)
set.seed(42)
n_boot <- 1000
mtcars %>%
select(-c(cyl, vs:carb)) %>%
pivot_longer(-mpg) -> tbl_mtcars_long
tbl_mtcars_long %>%
nest(model_data = c(mpg, value)) %>%
# for mpg and value observations within each level of name (e.g., disp, hp, ...)
mutate(plot_data = map(model_data, ~ {
# calculate information about the observed mpg and value observations
# within each level of name to be used in each bootstrap sample
submodel_data <- .x
n <- nrow(submodel_data)
min_x <- min(submodel_data$value)
max_x <- max(submodel_data$value)
pred_x <- seq(min_x, max_x, length.out = 100)
# do the bootstrapping by
# 1) repeatedly sampling samples of size n with replacement n_boot times,
# 2) for each bootstrap sample, fit a model,
# 3) and make a tibble of predictions
# the _dfr means to stack each tibble of predictions on top of one another
map_dfr(1:n_boot, ~ {
submodel_data %>%
sample_n(n, TRUE) %>%
lm(mpg ~ value, .) %>%
# suppress augment() warnings about dropping columns
{ suppressWarnings(augment(., newdata = tibble(value = pred_x))) }
}) %>%
# the bootstrapping is finished at this point
# now work across bootstrap samples at each value
group_by(value) %>%
# to estimate the lower and upper 95% quantiles of predicted mpgs
summarize(l = quantile(.fitted, .025),
u = quantile(.fitted, .975),
.groups = "drop"
) %>%
arrange(value)
})) %>%
select(-model_data) %>%
unnest(plot_data) -> tbl_plot_data
ggplot() +
# observed points, model, and se
geom_point(aes(value, mpg), tbl_mtcars_long) +
geom_smooth(aes(value, mpg), tbl_mtcars_long,
method = "lm", formula = "y ~ x", alpha = 0.25, fill = "red") +
# overlay bootstrapped se for direct comparison
geom_ribbon(aes(value, ymin = l, ymax = u), tbl_plot_data,
alpha = 0.25, fill = "blue") +
facet_wrap(~ name, scales = "free_x")
Run Code Online (Sandbox Code Playgroud)
由reprex 包(v1.0.0)于 2021-07-19 创建
也许是这样的:
library(data.table)
mt = as.data.table(mtcars_long_numeric)
# helper function to return lm coefficients as a list
lm_coeffs = function(x, y) {
coeffs = as.list(coefficients(lm(y~x)))
names(coeffs) = c('C', "m")
coeffs
}
# generate bootstrap samples of slope ('m') and intercept ('C')
nboot = 100
mtboot = lapply (seq_len(nboot), function(i)
mt[sample(.N,.N,TRUE), lm_coeffs(values, mpg), by=names])
mtboot = rbindlist(mtboot)
# and plot:
ggplot(mt, aes(values, mpg)) +
geom_abline(aes(intercept=C, slope=m), data = mtboot, size=0.3, alpha=0.3, color='forestgreen') +
stat_smooth(method = "lm", colour = "red", geom = "ribbon", fill = NA, size=0.5, linetype='dashed') +
geom_point() +
facet_wrap(~names, scales = 'free_x')
Run Code Online (Sandbox Code Playgroud)
PS 对于那些喜欢 dplyr (不是我)的人,这里是转换为该格式的相同逻辑:
lm_coeffs = function(x, y) {
coeffs = coefficients(lm(y~x))
tibble(C = coeffs[1], m=coeffs[2])
}
mtboot = lapply (seq_len(nboot), function(i)
mtcars_long_numeric %>%
group_by(names) %>%
slice_sample(prop=1, replace=TRUE) %>%
summarise(tibble(lm_coeffs2(values, mpg))))
mtboot = do.call(rbind, mtboot)
Run Code Online (Sandbox Code Playgroud)