pol*_*ian 4 python join pandas
目标是df如果满足预定条件,则按行组合两行。具体来说,如果列之间的差异小于或等于 a threshold,则连接 的行df。
给定两个df:df1和df2,以下代码部分实现了目标。
import pandas as pd
df1 = pd.DataFrame ( {'time': [2, 3, 4, 24, 31]} )
df2 = pd.DataFrame ( {'time': [4.1, 24.7, 31.4, 5]} )
th = 0.9
all_comb=[]
for index, row in df1.iterrows ():
for index2, row2 in df2.iterrows ():
diff = abs ( row ['time'] - row2 ['time'] )
if diff <= th:
all_comb.append({'idx_1':index,'time_1':row ['time'], 'idx_2':index2,'time_2':row2 ['time']})
df_all = pd.DataFrame(all_comb)
Run Code Online (Sandbox Code Playgroud)
输出的
idx_1 time_1 idx_2 time_2
0 2 4 0 4.1
1 3 24 1 24.7
2 4 31 2 31.4
Run Code Online (Sandbox Code Playgroud)
然而,上述方法忽略了某些信息,即 中的 2 和 3 的值df1以及 中的 5 的值df2。
预期的输出应该是这样的
idx_1 time_1 idx_2 time_2
0 2 NA NA
1 3 NA NA
2 4 0 4.1
3 24 1 24.7
4 31 2 31.4
NA NA 3 5
Run Code Online (Sandbox Code Playgroud)
感谢任何提示或任何比上述建议更紧凑和更有效的方式。
您可以执行交叉合并,然后根据您的条件一次性对所有行进行子集化。然后,我们concat添加回两个 DataFrame 中不满足条件的所有行。
import pandas as pd
df1 = df1.reset_index().add_suffix('_1')
df2 = df2.reset_index().add_suffix('_2')
m = df1.merge(df2, how='cross')
# Subset to all matches: |time_diff| <= thresh
th = 0.9
m = m[(m['time_1'] - m['time_2']).abs().le(th)]
# Add back rows with no matches
res = pd.concat([df1[~df1.index_1.isin(m.index_1)],
m,
df2[~df2.index_2.isin(m.index_2)]], ignore_index=True)
Run Code Online (Sandbox Code Playgroud)
print(res)
index_1 time_1 index_2 time_2
0 0.0 2.0 NaN NaN
1 1.0 3.0 NaN NaN
2 2.0 4.0 0.0 4.1
3 3.0 24.0 1.0 24.7
4 4.0 31.0 2.0 31.4
5 NaN NaN 3.0 5.0
Run Code Online (Sandbox Code Playgroud)