use*_*621 8 python regression loss neural-network
我想要一个具有 3 个回归输出的模型,例如下面的虚拟示例:
import torch
class MultiOutputRegression(torch.nn.Module):
def __init__(self):
super(MultiOutputRegression, self).__init__()
self.linear1 = torch.nn.Linear(1, 10)
self.linear2 = torch.nn.Linear(10, 10)
self.linear3 = torch.nn.Linear(3, 3)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
x = self.linear3(x)
return x
Run Code Online (Sandbox Code Playgroud)
假设我想训练它执行虚拟任务,例如,给定输入x返回[x, 2x, 3x].
定义标准和损失后,我们可以使用以下数据对其进行训练:
for i in range(1, 100, 2):
x_train = torch.tensor([i, i + 1]).reshape(2, 1).float()
y_train = torch.tensor([[j, 2 * j] for j in x_train]).float()
y_pred = model(x_train)
# todo: perform training iteration
Run Code Online (Sandbox Code Playgroud)
第一次迭代的样本数据为:
x_train
tensor([[1.],
[2.]])
y_train
tensor([[1., 2., 3.],
[2., 4., 6.]])
Run Code Online (Sandbox Code Playgroud)
如何定义合适的损失和标准来训练神经网络?
小智 7
class MultiOutputRegression(torch.nn.Module):
def __init__(self):
super(MultiOutputRegression, self).__init__()
self.linear1 = torch.nn.Linear(1, 10)
self.linear2 = torch.nn.Linear(10, 10)
self.linear3 = torch.nn.Linear(10, 3)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
x = self.linear3(x)
return x
model = MultiOutputRegression()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters())
for epoch in range(5):
for i in range(1, 100, 2):
x_train = torch.tensor([i, i + 1]).reshape(2, 1).float()
y_train = torch.tensor([[j, 2 * j, 3 * j] for j in x_train]).float()
optimizer.zero_grad()
y_pred = model(x_train)
loss = criterion(y_pred, y_train)
loss.backward()
optimizer.step()
print(loss.detach().numpy())
Run Code Online (Sandbox Code Playgroud)