Dak*_*pen 2 python speech-recognition nan deep-learning pytorch
我正在训练 Pytorch 模型。一段时间后,即使进行随机播放,除了一些有限张量之外,模型还只包含 NaN 值:
tensor([[[ nan, nan, nan, ..., nan, nan, nan],
[ nan, nan, nan, ..., nan, nan, nan],
[ nan, nan, nan, ..., nan, nan, nan],
...,
[ 1.4641, 0.0360, -1.1528, ..., -2.3592, -2.6310, 6.3893],
[ nan, nan, nan, ..., nan, nan, nan],
[ nan, nan, nan, ..., nan, nan, nan]]],
device='cuda:0', grad_fn=<AddBackward0>)
Run Code Online (Sandbox Code Playgroud)
detector_anomaly 函数返回:
File "TestDownload.py", line 701, in <module>
main(learning_rate, batch_size, epochs, experiment)
File "TestDownload.py", line 635, in main
train(model, device, train_loader, criterion, optimizer, scheduler, epoch, iter_meter, experiment)
File "TestDownload.py", line 486, in train
output = F.log_softmax(output, dim=2)
File "\lib\site-packages\torch\nn\functional.py", line 1672, in log_softmax
ret = input.log_softmax(dim)
(function _print_stack) Traceback (most recent call last):
File "TestDownload.py", line 701, in <module>
main(learning_rate, batch_size, epochs, experiment)
File "TestDownload.py", line 635, in main
train(model, device, train_loader, criterion, optimizer, scheduler, epoch, iter_meter, experiment)
File "TestDownload.py", line 490, in train
loss.backward()
File "\lib\site-packages\comet_ml\monkey_patching.py", line 317, in wrapper
return_value = original(*args, **kwargs)
File "\lib\site-packages\torch\tensor.py", line 245, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
File "\lib\site-packages\torch\autograd\__init__.py", line 145, in backward
Variable._execution_engine.run_backward(
RuntimeError: Function 'LogSoftmaxBackward' returned nan values in its 0th output.
Run Code Online (Sandbox Code Playgroud)
参考下一行output = F.log_softmax(output, dim=2)
如果我只是使用 try- except 执行此操作,它会显示另一个错误:(当损失函数在包含 NaN 的张量上运行时)
[W ..\torch\csrc\autograd\python_anomaly_mode.cpp:104] Warning: Error detected in CtcLossBackward. Traceback of forward call that caused the error:
File "TestDownload.py", line 734, in <module>
# In[ ]:
File "TestDownload.py", line 667, in main
test(model, device, test_loader, criterion, epoch, iter_meter, experiment)
File "TestDownload.py", line 517, in train
loss.backward()
File "\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "\lib\site-packages\torch\nn\modules\loss.py", line 1590, in forward
return F.ctc_loss(log_probs, targets, input_lengths, target_lengths, self.blank, self.reduction,
File "\lib\site-packages\torch\nn\functional.py", line 2307, in ctc_loss
return torch.ctc_loss(
(function _print_stack)
Traceback (most recent call last):
File "TestDownload.py", line 518, in train
File "\lib\site-packages\comet_ml\monkey_patching.py", line 317, in wrapper
return_value = original(*args, **kwargs)
File "\lib\site-packages\torch\tensor.py", line 245, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
File "\lib\site-packages\torch\autograd\__init__.py", line 145, in backward
Variable._execution_engine.run_backward(
RuntimeError: Function 'CtcLossBackward' returned nan values in its 0th output.
Run Code Online (Sandbox Code Playgroud)
正常的张量应该是这样的:
tensor([[[-3.3904, -3.4340, -3.3703, ..., -3.3613, -3.5098, -3.4344]],
[[-3.3760, -3.2948, -3.2673, ..., -3.4039, -3.3827, -3.3919]],
[[-3.3857, -3.3358, -3.3901, ..., -3.4686, -3.4749, -3.3826]],
...,
[[-3.3568, -3.3502, -3.4416, ..., -3.4463, -3.4921, -3.3769]],
[[-3.4379, -3.3508, -3.3610, ..., -3.3707, -3.4030, -3.4244]],
[[-3.3919, -3.4513, -3.3565, ..., -3.2714, -3.3984, -3.3643]]],
device='cuda:0', grad_fn=<TransposeBackward0>)
Run Code Online (Sandbox Code Playgroud)
如果是进口的,请注意双括号。
代码:
tensor([[[ nan, nan, nan, ..., nan, nan, nan],
[ nan, nan, nan, ..., nan, nan, nan],
[ nan, nan, nan, ..., nan, nan, nan],
...,
[ 1.4641, 0.0360, -1.1528, ..., -2.3592, -2.6310, 6.3893],
[ nan, nan, nan, ..., nan, nan, nan],
[ nan, nan, nan, ..., nan, nan, nan]]],
device='cuda:0', grad_fn=<AddBackward0>)
Run Code Online (Sandbox Code Playgroud)
此外,我尝试使用更大的批量大小(当前批量大小:1,更大的批量大小:6)运行它,并且它运行没有错误,直到我收到此错误的第一个时期的 40%。
CUDA内存不足
另外,我尝试标准化数据torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_mels=128, normalized=True)
将学习率从 5e-4 降低到 5e-5 也没有帮助。
附加信息:我的数据集包含近 300000 个 .wav 文件,并且在第一个时期的运行时出现 3-10% 时出现错误。
我感谢任何提示,我很乐意提交更多信息。
错误源可能是损坏的输入或标签,其中包含 inf 值的 NaN。您可以使用以下命令检查张量中是否没有 NaN 值
torch.isnan(tensor).any()
Run Code Online (Sandbox Code Playgroud)
或者张量中的所有值既不inf也不NaN与
torch.isfinite(tensor).all()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
2643 次 |
| 最近记录: |