在Mathematica中绘制一个数字线

Jam*_*ard 10 wolfram-mathematica intervals

我想在Mathematica的数字线上绘制一个简单的间隔.我该怎么做呢?

Dr.*_*ius 10

为了绘制开放或封闭的间隔,您可以执行以下操作:

intPlot[ss_, {s_, e_}, ee_] := Graphics[{Red, Thickness[.01],
   Text[Style[ss, Large, Red, Bold], {s, 0}],
   Text[Style[ee, Large, Red, Bold], {e, 0}],
   Line[{{s, 0}, {e, 0}}]},
  Axes -> {True, False},
  AxesStyle -> Directive[Thin, Blue, 12],
  PlotRange -> {{ s - .2 Abs@(s - e), e + .2 Abs@(s - e)}, {0, 0}},
  AspectRatio -> .1]

intPlot["[", {3, 4}, ")"]
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

编辑

以下是@Simon完成的很好的扩展,可能会再次试图解决重叠间隔问题.

intPlot[ss_, {s_, e_}, ee_] := intPlot[{{ss, {s, e}, ee}}]
intPlot[ints : {{_String, {_?NumericQ, _?NumericQ}, _String} ..}] :=
 Module[{i = -1, c = ColorData[3, "ColorList"]},
  With[
   {min = Min[ints[[All, 2, 1]]], max = Max[ints[[All, 2, 2]]]},
   Graphics[Table[
     With[{ss = int[[1]], s = int[[2, 1]], e = int[[2, 2]], ee = int[[3]]}, 
       {c[[++i + 1]], Thickness[.01],
       Text[Style[ss, Large, c[[i + 1]], Bold], {s, i}], 
       Text[Style[ee, Large, c[[i + 1]], Bold], {e, i}],
       Line[{{s, i}, {e, i}}]}], {int, ints}], 
    Axes -> {True, False}, 
    AxesStyle -> Directive[Thin, Blue, 12], 
    PlotRange -> {{min - .2 Abs@(min - max), max + .2 Abs@(min - max)}, {0, ++i}}, 
    AspectRatio -> .2]]]

(*Examples*)

intPlot["[", {3, 4}, ")"]
intPlot[{{"(", {1, 2}, ")"}, {"[", {1.5, 4}, ")"}, 
        {"[", {2.5, 7}, ")"}, {"[", {1.5, 4}, ")"}}]
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述


Sim*_*mon 6

这是一个丑陋的解决方案RegionPlot.开放限制用虚线表示,闭合限制用实线表示

numRegion[expr_, var_Symbol:x, range:{xmin_, xmax_}:{0, 0}, opts:OptionsPattern[]] :=
            Module[{le=LogicalExpand[Reduce[expr,var,Reals]],
                    y, opendots, closeddots, max, min, len},
 opendots =   Cases[Flatten[le/.And|Or->List], n_<var|n_>var|var<n_|var>n_:>n];
 closeddots = Cases[Flatten[le/.And|Or->List], n_<=var|n_>=var|var<=n_|var>=n_:>n];
 {max, min} = If[TrueQ[xmin < xmax], {xmin, xmax}, 
                 {Max, Min}@Cases[le, _?NumericQ, Infinity] // Through];
 len = max - min;
 RegionPlot[le && -1 < y < 1, {var, min-len/10, max+len/10}, {y, -1, 1},
            Epilog -> {Thick, Red, Line[{{#,1},{#,-1}}]&/@closeddots,
                       Dotted, Line[{{#,1},{#,-1}}]&/@opendots},
            Axes -> {True,False}, Frame->False, AspectRatio->.05, opts]]
Run Code Online (Sandbox Code Playgroud)

减少绝对值的示例:

numRegion[Abs[x] < 2]
Run Code Online (Sandbox Code Playgroud)

例1

可以使用任何变量:

numRegion[0 < y <= 1 || y >= 2, y]
Run Code Online (Sandbox Code Playgroud)

例2

Reduce无关的不等式,比较如下:

GraphicsColumn[{numRegion[0 < x <= 1 || x >= 2 || x < 0],
                numRegion[0 < x <= 1 || x >= 2 || x <= 0, x, {0, 2}]}]
Run Code Online (Sandbox Code Playgroud)

例3


Sim*_*mon 6

这是另一种使用更常规的白色和黑色圆圈绘制数字线的尝试,尽管您想要的任何图形元素都可以轻松换出.

它依赖于LogicalExpand[Simplify@Reduce[expr, x]]并将Sort表达式转换为类似于规范形式的替代规则可以起作用的东西.这没有经过广泛测试,可能有点脆弱.例如,如果给定的expr减少为TrueFalse,我的代码不会优雅地死亡.

numLine[expr_, x_Symbol:x, range:{_, _}:{Null, Null}, 
  Optional[hs:_?NumericQ, 1/30], opts:OptionsPattern[]] := 
 Module[{le = {LogicalExpand[Simplify@Reduce[expr, x]]} /. Or -> List,
   max, min, len, ints = {}, h, disk, hArrow, lt = Less|LessEqual, gt = Greater|GreaterEqual},
  If[TrueQ@MatchQ[range, {a_, b_} /; a < b],
   {min, max} = range,
   {min, max} = Through[{Min, Max}@Cases[le, _?NumericQ, \[Infinity]]]];
  len =Max[{max - min, 1}]; h = len hs;
  hArrow[{x1_, x2_}, head1_, head2_] := {{Thick, Line[{{x1, h}, {x2, h}}]},
                                         Tooltip[head1, x1], Tooltip[head2, x2]};
  disk[a_, ltgt_] := {EdgeForm[{Thick, Black}], 
    Switch[ltgt, Less | Greater, White, LessEqual | GreaterEqual, Black], 
    Disk[{a, h}, h]};
  With[{p = Position[le, And[_, _]]}, 
       ints = Extract[le, p] /. And -> (SortBy[And[##], First] &); 
       le = Delete[le, p]];   
  ints = ints /. (l1 : lt)[a_, x] && (l2 : lt)[x, b_] :> 
     hArrow[{a, b}, disk[a, l1], disk[b, l2]];
  le = le /. {(*_Unequal|True|False:>Null,*)
     (l : lt)[x, a_] :> (min = min - .3 len; 
       hArrow[{a, min}, disk[a, l], 
        Polygon[{{min, 0}, {min, 2 h}, {min - Sqrt[3] h, h}}]]),
     (g : gt)[x, a_] :> (max = max + .3 len; 
       hArrow[{a, max}, disk[a, g], 
        Polygon[{{max, 0}, {max, 2 h}, {max + Sqrt[3] h, h}}]])};
  Graphics[{ints, le}, opts, Axes -> {True, False}, 
   PlotRange -> {{min - .1 len, max + .1 len}, {-h, 3 h}},
   GridLines -> Dynamic[{{#, Gray}} & /@ MousePosition[
                           {"Graphics", Graphics}, None]], 
   Method -> {"GridLinesInFront" -> True}]
  ]
Run Code Online (Sandbox Code Playgroud)

(注意:我原本试图使用ArrowArrowheads绘制线条 - 但由于Arrowheads箭头头部相对于包围图形的宽度自动重新缩放,因此给我带来了太多麻烦.)

好的,一些例子:

numLine[0 < x], 
numLine[0 > x]
numLine[0 < x <= 1, ImageSize -> Medium]
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述
在此输入图像描述
在此输入图像描述

numLine[0 < x <= 1 || x > 2, Ticks -> {{0, 1, 2}}]
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

numLine[x <= 1 && x != 0, Ticks -> {{0, 1}}]
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

GraphicsColumn[{
  numLine[0 < x <= 1 || x >= 2 || x < 0],
  numLine[0 < x <= 1 || x >= 2 || x <= 0, x, {0, 2}]
  }]
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

编辑: 让我们将上面的内容与Wolfram | Alpha的输出进行比较

WolframAlpha["0 < x <= 1 or x >= 2 or x < 0", {{"NumberLine", 1}, "Content"}]
WolframAlpha["0 < x <= 1 or x >= 2 or x <= 0", {{"NumberLine", 1}, "Content"}]
Run Code Online (Sandbox Code Playgroud)

以上的输出

注意(在Mathematica会话或W | A网站上查看以上内容时)重要点和灰色动态网格线上的花哨工具提示.我偷了这些想法并将它们合并到numLine[]上面编辑的代码中.

输出WolframAlpha不是一个普通的Graphics对象,所以很难修改它Options或组合使用Show.要查看Wolfram | Alpha可以返回的各种数字对象,运行WolframAlpha["x>0", {{"NumberLine"}}]- "内容","单元格"和"输入"都返回基本相同的对象.无论如何,要从中获取图形对象

wa = WolframAlpha["x>0", {{"NumberLine", 1}, "Content"}]
Run Code Online (Sandbox Code Playgroud)

例如,你可以跑

Graphics@@First@Cases[wa, GraphicsBox[__], Infinity, 1]
Run Code Online (Sandbox Code Playgroud)

然后我们可以修改图形对象并将它们组合在一个网格中来获取

对齐