ubu*_*oob 5 python keras tensorflow
我的模特-
from tensorflow.keras.layers import ReLU
from keras.layers import Dropout
from tensorflow.keras.utils import plot_model
from matplotlib import pyplot
# define encoder
visible = Input(shape=(n_inputs,))
# encoder level 1
e = Dense(300)(visible)
e = ReLU()(e)
e = Dropout(0.05)(e)
# encoder level 1
e = Dense(200)(visible)
e = ReLU()(e)
e = Dropout(0.05)(e)
# encoder level 1
e = Dense(100)(visible)
e = ReLU()(e)
e = Dropout(0.05)(e)
# encoder level 1
e = Dense(50)(visible)
e = ReLU()(e)
e = Dropout(0.05)(e)
# bottleneck
n_bottleneck = round(float(n_inputs))
bottleneck = Dense(n_bottleneck)(e)
# define decoder, level 1
# encoder level 1
d = Dense(50)(bottleneck)
d = ReLU()(d)
d = Dropout(0.05)(d)
d = Dense(100)(bottleneck)
d = ReLU()(d)
d = Dropout(0.05)(d)
d = Dense(200)(bottleneck)
d = ReLU()(d)
d = Dropout(0.05)(d)
d = Dense(300)(bottleneck)
d = ReLU()(d)
d = Dropout(0.05)(d)
# output layer
output = Dense(n_inputs, activation='sigmoid')(d)
# define autoencoder model
model = Model(inputs=visible, outputs=output)
# compile autoencoder model
model.compile(optimizer='adam', loss='binary_crossentropy')
# plot the autoencoder
plot_model(model, 'autoencoder_compress.png', show_shapes=True)
# fit the autoencoder model to reconstruct input
history = model.fit(X_train_norm, X_train_norm, epochs=100, batch_size=32, verbose=2, validation_data=(X_test_norm,X_test_norm))
# plot loss
pyplot.plot(history.history['loss'], label='train')
pyplot.plot(history.history['val_loss'], label='test')
pyplot.legend()
pyplot.show()
# define an encoder model (without the decoder)
encoder = Model(inputs=visible, outputs=bottleneck)
plot_model(encoder, 'encoder_compress.png', show_shapes=True)
# save the encoder to file
encoder.save('drive/MyDrive/encoder_rf.h5')
Run Code Online (Sandbox Code Playgroud)
我收到这个错误-
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
Run Code Online (Sandbox Code Playgroud)
模型已被训练。
小智 2
在你的代码中,model.compiled_metrics是 None,检查这个
model.compiled_metrics == None
Run Code Online (Sandbox Code Playgroud)
您已经定义了一个没有权重的新编码器实例,更新了模型的权重。训练后保存编码器。
encoder-decoder你的代码里没有。
| 归档时间: |
|
| 查看次数: |
21487 次 |
| 最近记录: |