DQN Pytorch 损失持续增加

Vir*_*rus 6 python machine-learning reinforcement-learning q-learning pytorch

我正在使用 实现简单的DQN算法pytorch来解决来自 的 CartPole 环境gym。我已经调试了一段时间了,我不明白为什么模型没有学习。

观察结果:

  • 使用 的SmoothL1Loss性能比 差MSEloss,但两者的损失都会增加
  • 较小的LR不起作用Adam,我已经使用 0.0001、0.00025、0.0005 和默认值进行了测试

笔记:

  • 我已经单独调试了算法的各个部分,并且可以很有信心地说问题出在函数中learn。我想知道这个错误是否是由于我对detachpytorch 的误解或我犯的一些其他框架错误造成的。
  • 我试图尽可能接近原始论文(上面链接)

参考:

import torch as T
import torch.nn as nn
import torch.nn.functional as F

import gym
import numpy as np


class ReplayBuffer:
    def __init__(self, mem_size, input_shape, output_shape):
        self.mem_counter = 0
        self.mem_size = mem_size
        self.input_shape = input_shape

        self.actions = np.zeros(mem_size)
        self.states = np.zeros((mem_size, *input_shape))
        self.states_ = np.zeros((mem_size, *input_shape))
        self.rewards = np.zeros(mem_size)
        self.terminals = np.zeros(mem_size)

    def sample(self, batch_size):
        indices = np.random.choice(self.mem_size, batch_size)
        return self.actions[indices], self.states[indices], \
            self.states_[indices], self.rewards[indices], \
            self.terminals[indices]

    def store(self, action, state, state_, reward, terminal):
        index = self.mem_counter % self.mem_size

        self.actions[index] = action
        self.states[index] = state
        self.states_[index] = state_
        self.rewards[index] = reward
        self.terminals[index] = terminal
        self.mem_counter += 1


class DeepQN(nn.Module):
    def __init__(self, input_shape, output_shape, hidden_layer_dims):
        super(DeepQN, self).__init__()

        self.input_shape = input_shape
        self.output_shape = output_shape

        layers = []
        layers.append(nn.Linear(*input_shape, hidden_layer_dims[0]))
        for index, dim in enumerate(hidden_layer_dims[1:]):
            layers.append(nn.Linear(hidden_layer_dims[index], dim))
        layers.append(nn.Linear(hidden_layer_dims[-1], *output_shape))

        self.layers = nn.ModuleList(layers)

        self.loss = nn.MSELoss()
        self.optimizer = T.optim.Adam(self.parameters())

    def forward(self, states):
        for layer in self.layers[:-1]:
            states = F.relu(layer(states))
        return self.layers[-1](states)

    def learn(self, predictions, targets):
        self.optimizer.zero_grad()
        loss = self.loss(input=predictions, target=targets)
        loss.backward()
        self.optimizer.step()

        return loss


class Agent:
    def __init__(self, epsilon, gamma, input_shape, output_shape):
        self.input_shape = input_shape
        self.output_shape = output_shape
        self.epsilon = epsilon
        self.gamma = gamma

        self.q_eval = DeepQN(input_shape, output_shape, [64])
        self.memory = ReplayBuffer(10000, input_shape, output_shape)

        self.batch_size = 32
        self.learn_step = 0

    def move(self, state):
        if np.random.random() < self.epsilon:
            return np.random.choice(*self.output_shape)
        else:
            self.q_eval.eval()
            state = T.tensor([state]).float()
            action = self.q_eval(state).max(axis=1)[1]
            return action.item()

    def sample(self):
        actions, states, states_, rewards, terminals = \
            self.memory.sample(self.batch_size)

        actions = T.tensor(actions).long()
        states = T.tensor(states).float()
        states_ = T.tensor(states_).float()
        rewards = T.tensor(rewards).view(self.batch_size).float()
        terminals = T.tensor(terminals).view(self.batch_size).long()

        return actions, states, states_, rewards, terminals

    def learn(self, state, action, state_, reward, done):
        self.memory.store(action, state, state_, reward, done)

        if self.memory.mem_counter < self.batch_size:
            return

        self.q_eval.train()
        self.learn_step += 1
        actions, states, states_, rewards, terminals = self.sample()
        indices = np.arange(self.batch_size)
        q_eval = self.q_eval(states)[indices, actions]
        q_next = self.q_eval(states_).detach()
        q_target = rewards + self.gamma * q_next.max(axis=1)[0] * (1 - terminals)

        loss = self.q_eval.learn(q_eval, q_target)
        self.epsilon *= 0.9 if self.epsilon > 0.1 else 1.0

        return loss.item()


def learn(env, agent, episodes=500):
    print('Episode: Mean Reward: Last Loss: Mean Step')

    rewards = []
    losses = [0]
    steps = []
    num_episodes = episodes
    for episode in range(num_episodes):
        done = False
        state = env.reset()
        total_reward = 0
        n_steps = 0

        while not done:
            action = agent.move(state)
            state_, reward, done, _ = env.step(action)
            loss = agent.learn(state, action, state_, reward, done)

            state = state_
            total_reward += reward
            n_steps += 1

            if loss:
                losses.append(loss)

        rewards.append(total_reward)
        steps.append(n_steps)

        if episode % (episodes // 10) == 0 and episode != 0:
            print(f'{episode:5d} : {np.mean(rewards):5.2f} '
                  f': {np.mean(losses):5.2f}: {np.mean(steps):5.2f}')
            rewards = []
            losses = [0]
            steps = []

    print(f'{episode:5d} : {np.mean(rewards):5.2f} '
          f': {np.mean(losses):5.2f}: {np.mean(steps):5.2f}')
    return losses, rewards


if __name__ == '__main__':
    env = gym.make('CartPole-v1')
    agent = Agent(1.0, 1.0,
                  env.observation_space.shape,
                  [env.action_space.n])

    learn(env, agent, 500)
Run Code Online (Sandbox Code Playgroud)

gek*_*one 9

我认为主要问题是折扣因子gamma 。您将其设置为 1.0,这意味着您对未来奖励的权重与当前奖励相同。通常在强化学习中,我们更关心眼前的奖励而不是未来,因此 gamma 应始终小于 1。

只是为了尝试一下,我设置gamma = 0.99并运行您的代码:

Episode: Mean Reward: Last Loss: Mean Step
  100 : 34.80 :  0.34: 34.80
  200 : 40.42 :  0.63: 40.42
  300 : 65.58 :  1.78: 65.58
  400 : 212.06 :  9.84: 212.06
  500 : 407.79 : 19.49: 407.79
Run Code Online (Sandbox Code Playgroud)

正如您所看到的,损失仍然增加(即使没有以前那么多),但奖励也增加了。您应该考虑到这里的损失并不是衡量性能的良好指标,因为您有一个移动目标您可以通过使用目标网络来降低目标的不稳定性。通过额外的参数调整和目标网络,可能会使损失更加稳定。

还要注意是,在强化学习中,损失值并不像在监督学习中那么重要;损失的减少并不总是意味着绩效的提高,反之亦然。

问题在于,当训练步骤发生时,Q 目标正在移动;当智能体发挥作用时,预测正确的奖励总和变得极其困难(例如,探索的状态和奖励越多意味着奖励方差越高),因此损失会增加。在更复杂的环境(更多状态、不同奖励等)中这一点更加明显。

与此同时,Q 网络在近似每个动作的 Q 值方面变得越来越好,因此奖励(可能)会增加。

  • @Virus 我理解你的推理,理想情况下这可能是真的。通过足够长的训练和完美的调整,损失可能与性能严格相关。查看编辑后的答案,希望对您有所帮助。另外我不得不说,这些大多是我的观点,是根据我的(一点也不详尽)经验组成的,所以显然不要把一切都当作教科书上的真理 (2认同)