Nic*_*eli 9 python deep-learning torch pytorch knowledge-graph
如何创建一个联合模型,股票的参数知识图嵌入(KGE)模型,塔克(如下),和手套(与尺寸一起承担共生矩阵已经有售)pytorch?
换句话说,联合模型必须服从CMTF的标准(Ç oupled中号ATRIX和Ť恩索尔˚F actorizations)框架和从所述两个嵌入物必须在训练期间被捆扎的权重。这里的问题是 KGE 需要一个三元组(主题、关系、对象),而 GloVe 需要一个共现矩阵。此外,它们的损失函数的计算方式也不同。
class TuckER(torch.nn.Module):
def __init__(self, d, d1, d2, **kwargs):
super(TuckER, self).__init__()
self.E = torch.nn.Embedding(len(d.entities), d1)
self.R = torch.nn.Embedding(len(d.relations), d2)
self.W = torch.nn.Parameter(torch.tensor(np.random.uniform(-1, 1, (d2, d1, d1)),
dtype=torch.float, device="cuda", requires_grad=True))
self.input_dropout = torch.nn.Dropout(kwargs["input_dropout"])
self.hidden_dropout1 = torch.nn.Dropout(kwargs["hidden_dropout1"])
self.hidden_dropout2 = torch.nn.Dropout(kwargs["hidden_dropout2"])
self.loss = torch.nn.BCELoss()
self.bn0 = torch.nn.BatchNorm1d(d1)
self.bn1 = torch.nn.BatchNorm1d(d1)
def init(self):
xavier_normal_(self.E.weight.data)
xavier_normal_(self.R.weight.data)
def forward(self, e1_idx, r_idx):
e1 = self.E(e1_idx)
x = self.bn0(e1)
x = self.input_dropout(x)
x = x.view(-1, 1, e1.size(1))
r = self.R(r_idx)
W_mat = torch.mm(r, self.W.view(r.size(1), -1))
W_mat = W_mat.view(-1, e1.size(1), e1.size(1))
W_mat = self.hidden_dropout1(W_mat)
x = torch.bmm(x, W_mat)
x = x.view(-1, e1.size(1))
x = self.bn1(x)
x = self.hidden_dropout2(x)
x = torch.mm(x, self.E.weight.transpose(1,0))
pred = torch.sigmoid(x)
return pred
Run Code Online (Sandbox Code Playgroud)
我知道如何通过加载状态字典、获取实例、在两个模型上运行它们,然后在顶部应用前馈层来联合训练两个预训练模型。但我似乎无法弄清楚这种情况。你能建议我如何实现这一目标吗?
重要资源: