了解 raster::extract 和 terra:extract

Cec*_*ile 9 r polygon raster terra

我在完全理解 terra:extract 时遇到问题。我希望提取管理 GADM 多边形的平均栅格值。我的栅格每个国家/地区只有一个值。我希望特定国家/地区内的每个行政多边形都具有相同的值,并且某些包含某些国家/地区边界的多边形会分配面积加权平均值。不幸的是,我当前的脚本并非如此。raster::extract 似乎给出了合理的结果,但不是 terra:extract (请参阅下面的示例代码 - 提供具有不同值的输出)。有人可以根据下面的代码解释一下为什么吗?非常感谢。

## libraries
library(terra)
library(raster)

#===============================================    
## sample example - provides results as expected (1.333, that is (2*0.5+1*1)/1.5)

# sample raster and SpatialPolygons
r <- raster(ncol=2, nrow=3, xmn= 0, ymn= 0, xmx = 30,ymx = 30)
r[] <- c(2, 2, 2, 1, NA, NA)
cds <- rbind(c(7.5,0), c(7.5,20), c(30, 20),c(30,10))
library(sp)
p = Polygon(cds)
ps = Polygons(list(p),1)
sps = SpatialPolygons(list(ps))
plot(r)
plot(sps, add=T)
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

# test raster package
test1 <- raster::extract(r , sps, fun=mean, na.rm=T,  weights=TRUE) 
test1 # I get 1.333333 which is what I would expect

# test terra package
sps.spatv <- vect(sps)
r.spatR <-  rast(r) #conversion to SpatRaster class

test2 <- terra::extract(r.spatR, sps.spatv, fun=mean, na.rm=T,  weights=TRUE, exact=TRUE, touches=TRUE) 
test2 # I get 1.333333 which is what I would expect  

#===============================================    
## sample code that leads to different results between raster and terra packages - I wish to understand why such difference.
# sample SpatialPolygonsDataFrame 
ETH <- getData("GADM", country = 'ETH', level = 2)
SOM <- getData("GADM", country = 'SOM', level = 2)
sps <- bind(ETH, SOM)

# sample raster stack
ra <- raster(ncol=31, nrow=24, xmn= 33.3, ymn=  3.67, xmx = 47.5, ymx = 14.65, crs=crs(sps) )
ra[] <- rep(10, 24*31)
ra2 <- raster(ncol=31, nrow=24, xmn= 33.3, ymn= -7.31 , xmx = 47.5, ymx = 3.67, crs=crs(sps) )
ra2[] <- rep(20, 24*31)
ra3 <- merge(ra, ra2)

rb <- raster(ncol=31, nrow=24, xmn= 33.3, ymn=  3.67, xmx = 47.5, ymx = 14.65, crs=crs(sps) )
rb[] <- rep(35, 24*31)
rb2 <- raster(ncol=31, nrow=24, xmn= 33.3, ymn= -7.31 , xmx = 47.5, ymx = 3.67, crs=crs(sps) )
rb2[] <- rep(45, 24*31)
rb3 <- merge(rb, rb2)

stack.r <- stack(ra3, rb3)
names(stack.r) <- c("ra3", "rb3")

plot(stack.r[[1]])
plot(sps, add=T)

# raster::extract
rastR <- raster::extract(stack.r, sps, fun=mean, na.rm=T,  weights=TRUE)

# > head(rastR)
# [,1] [,2]
# [1,]   10   35
# [2,]   10   35
# [3,]   10   35
# [4,]   10   35
# [5,]   10   35
# [6,]   10   35

rastR2 <- rastR %>%
  cbind(sps@data["GID_2"]) # add ID

# terra::extract
sps.spatv <- vect(sps)
stack.r.spatR <-  rast(stack.r) 
rastT <- terra::extract(stack.r.spatR, sps.spatv, fun=mean, na.rm=T,  exact=TRUE)
# > head(rastT)
# ID ra3 rb3
# [1,]  1  10  10
# [2,]  2  10  10
# [3,]  3  10  10
# [4,]  4  10  10
# [5,]  5  10  10
# [6,]  6  10  10
rastT2 <- rastT %>%
  cbind(sps@data["GID_2"]) # add ID
Run Code Online (Sandbox Code Playgroud)

Rob*_*ans 11

感谢您提出扩展的问题并坚持。有一个错误terra现已修复:

您的简化示例数据

library(raster)
library(terra)
#terra version 1.7.29

sp <- getData("GADM", country = 'ETH', level = 2)[1:3,]
sv <- vect(sp)

ra <- raster(ncols=31, nrows=24, xmn= 33.3, ymn=  3.67, xmx = 47.5, ymx = 14.65, crs=crs(sp), vals=rep(10, 24*31))
rb <- raster(ncols=31, nrows=24, xmn= 33.3, ymn=  3.67, xmx = 47.5, ymx = 14.65, crs=crs(sv), vals=rep(35, 24*31))

r_raster <- stack(ra, rb)
names(r_raster) <- c("ra", "rb")
r_terra <-  rast(r_raster) 
Run Code Online (Sandbox Code Playgroud)

没有small=FALSE重量的测试raster

extract(r_raster, sp, fun=mean, na.rm=T, small=FALSE)
#     [,1] [,2]
#[1,]   NA   NA
#[2,]   10   35
#[3,]   10   35

extract(r_terra, sv, fun=mean, na.rm=T)
#  ID  ra  rb
#1  1  10  35
#2  2  10  35
#3  3  10  35
Run Code Online (Sandbox Code Playgroud)

请注意,terra 还返回不覆盖任何像元中心的多边形的值。实际上,该选项touches=TRUE始终用于此类多边形以避免返回 NA。

不使用权重进行测试(默认small=TRUEraster

extract(r_raster, sp, fun=mean, na.rm=T)
#      ra rb
#[1,] 10 35
#[2,] 10 35
#[3,] 10 35

extract(r_terra, sv, fun=mean, na.rm=T, touches=TRUE)
#  ID ra rb
#1  1 10 35
#2  2 10 35
#3  3 10 35
 
Run Code Online (Sandbox Code Playgroud)

用重量进行测试

extract(r_raster, sp, fun=mean, na.rm=T,  weights=TRUE)
#     ra rb
#[1,] 10 35
#[2,] 10 35
#[3,] 10 35

extract(r_terra, sv, fun=mean, na.rm=T,  weights=TRUE)
#     ID ra rb
#[1,]  1 10 35
#[2,]  2 10 35
#[3,]  3 10 35
Run Code Online (Sandbox Code Playgroud)

  • 您可以通过仅显示埃塞俄比亚几个地区的两个提取物的输出来简化您的代码吗?所有其他代码都使我们很难了解发生了什么。或者更好的是,从类似 `eth &lt;- getData("GADM", country="ETH", level=1")` 开始创建一个可重现的示例 (2认同)