lop*_*ded 5 convolution gaussianblur pytorch
我正在尝试在 pytorch 中实现 3D 体积的类似高斯的模糊。我可以很容易地通过与 2D 高斯核进行卷积来对 2D 图像进行 2D 模糊,并且相同的方法似乎也适用于使用 3D 高斯核的 3D。然而,它在 3D 中非常慢(特别是对于较大的 sigmas/kernel 大小)。我知道这也可以通过与 2D 内核进行 3 次卷积来完成,这应该要快得多,但我无法让它工作。我的测试用例如下。
import torch
import torch.nn.functional as F
VOL_SIZE = 21
def make_gaussian_kernel(sigma):
ks = int(sigma * 5)
if ks % 2 == 0:
ks += 1
ts = torch.linspace(-ks // 2, ks // 2 + 1, ks)
gauss = torch.exp((-(ts / sigma)**2 / 2))
kernel = gauss / gauss.sum()
return kernel
def test_3d_gaussian_blur(blur_sigma=2):
# Make a test volume
vol = torch.zeros([VOL_SIZE] * 3)
vol[VOL_SIZE // 2, VOL_SIZE // 2, VOL_SIZE // 2] = 1
# 3D convolution
vol_in = vol.reshape(1, 1, *vol.shape)
k = make_gaussian_kernel(blur_sigma)
k3d = torch.einsum('i,j,k->ijk', k, k, k)
k3d = k3d / k3d.sum()
vol_3d = F.conv3d(vol_in, k3d.reshape(1, 1, *k3d.shape), stride=1, padding=len(k) // 2)
# Separable 2D convolution
vol_in = vol.reshape(1, *vol.shape)
k2d = torch.einsum('i,j->ij', k, k)
k2d = k2d / k2d.sum()
k2d = k2d.expand(VOL_SIZE, 1, *k2d.shape)
for i in range(3):
vol_in = vol_in.permute(0, 3, 1, 2)
vol_in = F.conv2d(vol_in, k2d, stride=1, padding=len(k) // 2, groups=VOL_SIZE)
vol_3d_sep = vol_in
torch.allclose(vol_3d, vol_3d_sep) # --> False
Run Code Online (Sandbox Code Playgroud)
任何帮助将非常感激!
理论上,您可以使用三个 2d 卷积来计算 3d 高斯卷积,但这意味着您必须减小 2d 内核的大小,因为您在每个方向上有效地进行了两次卷积。
但计算上更有效的(也是你通常想要的)是将其分离为一维内核。我更改了函数的第二部分来实现此目的。(我必须说我真的很喜欢你基于排列的方法!)由于你使用的是 3d 体积,所以你不能真正很好地使用 or 函数conv2d
,conv1d
所以最好的事情就是使用,conv3d
即使你只是计算 1d -卷积。
请注意,使用此方法未达到的allclose
阈值,可能是由于取消错误。1e-8
def test_3d_gaussian_blur(blur_sigma=2):
# Make a test volume
vol = torch.randn([VOL_SIZE] * 3) # using something other than zeros
vol[VOL_SIZE // 2, VOL_SIZE // 2, VOL_SIZE // 2] = 1
# 3D convolution
vol_in = vol.reshape(1, 1, *vol.shape)
k = make_gaussian_kernel(blur_sigma)
k3d = torch.einsum('i,j,k->ijk', k, k, k)
k3d = k3d / k3d.sum()
vol_3d = F.conv3d(vol_in, k3d.reshape(1, 1, *k3d.shape), stride=1, padding=len(k) // 2)
# Separable 1D convolution
vol_in = vol[None, None, ...]
# k2d = torch.einsum('i,j->ij', k, k)
# k2d = k2d / k2d.sum() # not necessary if kernel already sums to zero, check:
# print(f'{k2d.sum()=}')
k1d = k[None, None, :, None, None]
for i in range(3):
vol_in = vol_in.permute(0, 1, 4, 2, 3)
vol_in = F.conv3d(vol_in, k1d, stride=1, padding=(len(k) // 2, 0, 0))
vol_3d_sep = vol_in
print((vol_3d- vol_3d_sep).abs().max()) # something ~1e-7
print(torch.allclose(vol_3d, vol_3d_sep)) # allclose checks if it is around 1e-8
Run Code Online (Sandbox Code Playgroud)
附录:如果你真的想滥用conv2d
来处理卷,你可以尝试
# separate 3d kernel into 1d + 2d
vol_in = vol[None, None, ...]
k2d = torch.einsum('i,j->ij', k, k)
k2d = k2d.expand(VOL_SIZE, 1, len(k), len(k))
# k2d = k2d / k2d.sum() # not necessary if kernel already sums to zero, check:
# print(f'{k2d.sum()=}')
k1d = k[None, None, :, None, None]
vol_in = F.conv3d(vol_in, k1d, stride=1, padding=(len(k) // 2, 0, 0))
vol_in = vol_in[0, ...]
# abuse conv2d-groups argument for volume dimension, works only for 1 channel volumes
vol_in = F.conv2d(vol_in, k2d, stride=1, padding=(len(k) // 2, len(k) // 2), groups=VOL_SIZE)
vol_3d_sep = vol_in
Run Code Online (Sandbox Code Playgroud)
或者专门 conv2d
使用你可以这样做:
# separate 3d kernel into 1d + 2d
vol_in = vol[None, ...]
# 1d kernel
k1d = k[None, None, :, None]
k1d = k1d.expand(VOL_SIZE, 1, len(k), 1)
# 2d kernel
k2d = torch.einsum('i,j->ij', k, k)
k2d = k2d.expand(VOL_SIZE, 1, len(k), len(k))
vol_in = vol_in.permute(0, 2, 1, 3)
vol_in = F.conv2d(vol_in, k1d, stride=1, padding=(len(k) // 2, 0), groups=VOL_SIZE)
vol_in = vol_in.permute(0, 2, 1, 3)
vol_in = F.conv2d(vol_in, k2d, stride=1, padding=(len(k) // 2, len(k) // 2), groups=VOL_SIZE)
vol_3d_sep = vol_in
Run Code Online (Sandbox Code Playgroud)
这些仍然应该比三个连续的二维卷积更快。
归档时间: |
|
查看次数: |
2456 次 |
最近记录: |