Aml*_*eto 2 pdf r pdf-scraping
我正在尝试抓取包含有关公司子公司信息的PDF。我看过很多使用 R 包 Tabulizer 的帖子,但不幸的是,由于某些原因,这在我的 Mac 上不起作用。由于 Tabulizer 使用 Java 依赖项,我尝试安装不同版本的 Java (6-13),然后重新安装软件包,但仍然无法正常工作(当我运行extract_tablesR 会话时会发生什么情况)。
我需要从第 19 页开始抓取整个 pdf 并构建一个显示公司名称及其子公司的表格。在 pdf 中,名称以任何字母/数字/符号开头,而子公司以单点或双点开头。
所以我尝试使用pdftools和pdftables包装。下面的代码提供了一个类似于第 19 页上的表格:
library(pdftools)
library(pdftables)
library(tidyverse)
tt = pdf_text("~/DATA/978-1-912036-41-7-Who Owns Whom UK-Ireland-Volume-1.pdf")
df <- tt[19]
df2 <- strsplit(df, ' ')
df3 <-as.data.frame(do.call(cbind, df2)) %>%
filter(V1!="") %>%
mutate(V2=str_split_fixed(V1, "England . ", 2)) %>%
mutate(V3=str_split_fixed(V1, "England", 2)) %>%
select(V2,V3,V1) %>%
mutate(V1=ifelse(V1==V3,"",V1),V3=ifelse(V3==V2,"",V3)) %>%
select(V3,V2,V1) %>%
mutate_at(c("V1"), funs(lead), n = 1 ) %>%
mutate_at(c("V3"), funs(lag), n = 1 ) %>%
unite(V4,V1, V2, V3, sep = "", remove = FALSE)
Run Code Online (Sandbox Code Playgroud)
我相信有一个更复杂的功能可以更巧妙地做到这一点。例如通过使用'\n'或'\r'与strsplit:
df2 <- strsplit(df, '\n')
df3 <- do.call(cbind.data.frame, df2)
Run Code Online (Sandbox Code Playgroud)
任何比我更有经验的人都可以建议我如何刮这张桌子吗?
就像@Justin Coco 暗示的那样,这很有趣。代码最终比我预期的要复杂一些,但我认为结果应该是你想象的。
我使用了pdf_data代替,pdf_text所以我可以处理单词的位置。
library(pdftools)
#> Using poppler version 0.86.1
library(tidyverse)
pdf_location <- "/location/of/pdf"
pdf_raw <- pdf_data(pdf_location)
Run Code Online (Sandbox Code Playgroud)
然后我编写了一个可以处理 PDF 页面的函数:
get_table <- function(x, page) {
x[[page]] %>% # select page, I use this variable again below, which is why I'm not simply looping through the whole object
filter(y > 25, y < 833) %>% # above and below these positions is the pdf header which we are not interested in
mutate(column = case_when( # I check the x-positions where the columns start an end and transformed them into column numbers
x >= 36 & x < 220 ~ 1L,
x >= 220 & x < 403 ~ 2L,
x >= 403 ~ 3L,
)) %>%
mutate(newrow = case_when( # check if this is a new line
column == 1L & x == 36 ~ TRUE,
column == 2L & x == 220 ~ TRUE,
column == 3L & x == 403 ~ TRUE,
TRUE ~ FALSE
),
row = cumsum(newrow), # get the row number
subsidiary = newrow & text == ".") %>% # as you say, subsidiary names start with "."
group_by(row, column) %>% # grouping and summarising moves the text into one 'cell'
summarise(text = paste(text, collapse = " "),
subsidiary = sum(subsidiary) > 0,
.groups = "drop") %>%
mutate(headline = !str_detect(text, "\\s")) %>% # the category headlines (@, A, B, C, etc.) are still in there but can be identified easily since they lack whitespace
mutate(row = ifelse(row > 1 & !subsidiary & !lag(subsidiary) & !lag(headline), lag(row), row),
row = ifelse(row > 1 & !subsidiary & !lag(subsidiary) & !lag(headline), lag(row), row)) %>% # some company names stretch over up to three lines but lines are not indented
group_by(row, column) %>%
summarise(text = paste(text, collapse = " "),
subsidiary = sum(subsidiary) > 0,
headline = head(headline, 1),
.groups = "drop") %>%
mutate(page = page, .before = row) # finally add the page number to keep track
}
Run Code Online (Sandbox Code Playgroud)
您可以在一页上进行测试,也可以一次遍历所有这些:
pdf_df <- map_df(19:1428, ~get_table(pdf_raw, page = .x))
Run Code Online (Sandbox Code Playgroud)
我已经喜欢 df,但是您要求表格应该“显示公司名称及其子公司”。因此,让我们对pdf_df对象进行更多讨论。
pdf_df %>%
filter(!headline) %>%
mutate(company_nr = cumsum(!subsidiary)) %>%
group_by(company_nr) %>%
mutate(company = text[!subsidiary & !headline]) %>%
filter(subsidiary) %>%
select(company_nr, company, subsidiary = text)
#> # A tibble: 303,380 x 3
#> # Groups: company_nr [115,477]
#> company_nr company subsidiary
#> <int> <chr> <chr>
#> 1 1 ?WHAT IF! HOLDINGS LIMITED The Gla… . ?What If! China Holdings Li…
#> 2 1 ?WHAT IF! HOLDINGS LIMITED The Gla… . . ?What If! Innovation Sing…
#> 3 1 ?WHAT IF! HOLDINGS LIMITED The Gla… . ?What If! Joint Ventures Li…
#> 4 1 ?WHAT IF! HOLDINGS LIMITED The Gla… . ?What If! Limited England
#> 5 1 ?WHAT IF! HOLDINGS LIMITED The Gla… . . ? What If ! Inventors Lim…
#> 6 1 ?WHAT IF! HOLDINGS LIMITED The Gla… . . ? What If ! Training Limi…
#> 7 1 ?WHAT IF! HOLDINGS LIMITED The Gla… . Nobby Styles Limited Englan…
#> 8 2 @A COMPANY LIMITED Premier Suite 4… . Aviva Holdings Limited Engl…
#> 9 2 @A COMPANY LIMITED Premier Suite 4… . Copper Mountain Networks Li…
#> 10 2 @A COMPANY LIMITED Premier Suite 4… . Just Ties Limited England
#> # … with 303,370 more rows
Run Code Online (Sandbox Code Playgroud)
由reprex 包( v2.0.0 )于 2021 年 5 月 23 日创建
如果有问题,请在评论中告诉我。我显然没有浏览所有页面来检查脚本是否有一些带有特定公司名称等的怪癖,但第一页对我来说看起来不错。