Caf*_*eso 4 r ggplot2 random-walk geom-tile
我正在寻找一个简单的代码,可以模拟网格中的二维随机游走(使用R
),然后使用 绘制数据ggplot
。
特别是,我对从 2D 网格中的几个位置(5 个点)到方形网格中心的随机游走感兴趣。它仅用于可视化目的。
然后我的想法是ggplot
在离散网格上绘制结果(如模拟的那样),可能使用函数geom_tile
。
您对我可以轻松操作的现有代码有什么建议吗?
这是一个带有循环的小例子for
。从这里,您可以简单地调整X_t
和Y_t
的定义方式:
Xt = 0; Yt = 0
for (i in 2:1000)
{
Xt[i] = Xt[i-1] + rnorm(1,0,1)
Yt[i] = Yt[i-1] + rnorm(1,0,1)
}
df <- data.frame(x = Xt, y = Yt)
ggplot(df, aes(x=x, y=y)) + geom_path() + theme_classic() + coord_fixed(1)
Run Code Online (Sandbox Code Playgroud)
与OP聊天后,我修改了代码以包含步骤概率。这可能会导致更频繁地保持静止行走。在更高的维度中,您需要降低prob
因子以补偿更多的选项。
最后,我的函数不考虑绝对距离,它只考虑网格上所有维度上特定步长内的点。例如,假设c(0,0)
您可以使用c(1,1)
此功能前往某个位置。但我想这与电网的连通性有关。
如果OP只想考虑距离当前位置1(距离)以内的节点,则使用以下版本move_step()
move_step <- function(cur_pos, grid, prob = 0.04, size = 1){
opts <- grid %>%
rowwise() %>%
mutate(across(.fns = ~(.x-.env$cur_pos[[cur_column()]])^2,
.names = '{.col}_square_diff')) %>%
filter(sqrt(sum(c_across(ends_with("_square_diff"))))<=.env$size) %>%
select(-ends_with("_square_diff")) %>%
left_join(y = mutate(cur_pos, current = TRUE), by = names(grid))
new_pos <- opts %>%
mutate(weight = case_when(current ~ 1-(prob*(n()-1)), #calculate chance to move,
TRUE ~ prob), #in higher dimensions, we may have more places to move
weight = if_else(weight<0, 0, weight)) %>% #thus depending on prob, we may always move.
sample_n(size = 1, weight = weight) %>%
select(-weight, -current)
new_pos
}
Run Code Online (Sandbox Code Playgroud)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(ggplot2)
library(gganimate)
move_step <- function(cur_pos, grid, prob = 0.04, size = 1){
opts <- grid %>%
filter(across(.fns = ~ between(.x, .env$cur_pos[[cur_column()]]-.env$size, .env$cur_pos[[cur_column()]]+.env$size))) %>%
left_join(y = mutate(cur_pos, current = TRUE), by = names(grid))
new_pos <- opts %>%
mutate(weight = case_when(current ~ 1-(prob*(n()-1)), #calculate chance to move,
TRUE ~ prob), #in higher dimensions, we may have more places to move
weight = if_else(weight<0, 0, weight)) %>% #thus depending on prob, we may always move.
sample_n(size = 1, weight = weight) %>%
select(-weight, -current)
new_pos
}
sim_walk <- function(cur_pos, grid, grid_prob = 0.04, steps = 50, size = 1){
iterations <- cur_pos
for(i in seq_len(steps)){
cur_pos <- move_step(cur_pos, grid, prob = grid_prob, size = size)
iterations <- bind_rows(iterations, cur_pos)
}
iterations$i <- 1:nrow(iterations)
iterations
}
origin <- data.frame(x = 0, y =0)
small_grid <- expand.grid(x = -1:1, y = -1:1)
small_walk <- sim_walk(cur_pos = origin,
grid = small_grid)
ggplot(small_walk, aes(x, y)) +
geom_path() +
geom_point(color = "red") +
transition_reveal(i) +
labs(title = "Step {frame_along}") +
coord_fixed()
Run Code Online (Sandbox Code Playgroud)
large_grid <- expand.grid(x = -10:10, y = -10:10)
large_walk <- sim_walk(cur_pos = origin,
grid = large_grid,
steps = 100)
ggplot(large_walk, aes(x,y)) +
geom_path() +
geom_point(color = "red") +
transition_reveal(i) +
labs(title = "Step {frame_along}") +
xlim(c(-10,10)) + ylim(c(-10,10))+
coord_fixed()
Run Code Online (Sandbox Code Playgroud)
large_walk %>%
count(x, y) %>%
right_join(y = expand.grid(x = -10:10, y = -10:10), by = c("x","y")) %>%
mutate(n = if_else(is.na(n), 0L, n)) %>%
ggplot(aes(x,y)) +
geom_tile(aes(fill = n)) +
coord_fixed()
Run Code Online (Sandbox Code Playgroud)
multi_dim_walk <- sim_walk(cur_pos = data.frame(x = 0, y = 0, z = 0),
grid = expand.grid(x = -20:20, y = -20:20, z = -20:20),
steps = 100, size = 2)
library(cowplot)
plot_grid(
ggplot(multi_dim_walk, aes(x, y)) + geom_path(),
ggplot(multi_dim_walk, aes(x, z)) + geom_path(),
ggplot(multi_dim_walk, aes(y, z)) + geom_path())
Run Code Online (Sandbox Code Playgroud)
由reprex 包(v1.0.0)创建于 2021-05-06
归档时间: |
|
查看次数: |
1701 次 |
最近记录: |