为什么 Spacy 3 NER 对 GPU 和 CPU 使用不同的管道?

mbr*_*cky 1 gpu transformer-model spacy-3

Spacy 'train' 命令使用命令行选项 --gpu 0,允许在使用 GPU 训练和不使用 GPU 训练(仅使用 CPU)之间进行“最后一刻”选择。

但是,使用https://spacy.io/usage/training#quickstart在 GPU 和 CPU 之间进行选择会导致(基本)配置存在重大差异。就我而言(处理 NER),我有两个不同的管道:

  • 对于 CPU: pipeline = [" tok2vec ","ner"]
  • 对于 GPU:管道 = [“变压器”,“ner”]

(具有非常不同的以下组件设置)。

由于我的 GPU 只有 6GB 内存,所以我很快就用完了 GPU 内存 - 无法使用它。但是当我切换到仅使用 CPU 时,两个管道之间的训练行为有很大不同:

[“tok2vec”,“ner”] 管道几乎在单核上运行,在几个小时内训练我的模型(8,000 个训练,2000 个开发/验证文档)。明显比 Spacy 2 快(即使使用 GPU),尽管有时会使用大量内存(高达 30G)。

["transformer","ner"] 管道爆炸性地使用多达 20 个核心(在 40 个逻辑核心的机器上),因此我希望它能够快速运行。但它似乎会永远运行。在一个小时内,我只完成了第一个“纪元”,然后(在下一个纪元)它崩溃了(见下文)。由于我的数据(每个批处理 100 个“文档”的 DocBin 文件)是相同的,因此下面的崩溃(无序 B/I 标记)很难解释。

我的主要问题是为什么针对 GPU 和 CPU 时的管道不同?如果以 GPU 为目标,向量在哪里?

碰撞: ...

 File "C:\Work\ML\Spacy3\lib\site-packages\spacy\training\loop.py", line 98, in train
    for batch, info, is_best_checkpoint in training_step_iterator:
  File "C:\Work\ML\Spacy3\lib\site-packages\spacy\training\loop.py", line 194, in train_while_improving
    nlp.update(
  File "C:\Work\ML\Spacy3\lib\site-packages\spacy\language.py", line 1107, in update
    proc.update(examples, sgd=None, losses=losses, **component_cfg[name])
  File "spacy\pipeline\transition_parser.pyx", line 350, in spacy.pipeline.transition_parser.Parser.update
  File "spacy\pipeline\transition_parser.pyx", line 604, in spacy.pipeline.transition_parser.Parser._init_gold_batch
  File "spacy\pipeline\_parser_internals\ner.pyx", line 273, in spacy.pipeline._parser_internals.ner.BiluoPushDown.init_gold
  File "spacy\pipeline\_parser_internals\ner.pyx", line 53, in spacy.pipeline._parser_internals.ner.BiluoGold.__init__
  File "spacy\pipeline\_parser_internals\ner.pyx", line 69, in spacy.pipeline._parser_internals.ner.create_gold_state
  File "spacy\training\example.pyx", line 240, in spacy.training.example.Example.get_aligned_ner
  File "spacy\tokens\doc.pyx", line 698, in spacy.tokens.doc.Doc.ents.__get__
ValueError: [E093] token.ent_iob values make invalid sequence: I without B
Run Code Online (Sandbox Code Playgroud)

pol*_*m23 5

基本上,如果您在快速入门中选择“GPU”,则 spaCy 会使用 Transformers 管道,该管道在架构上与 CPU 管道有很大不同。快速入门中的设置是推荐的基本设置,而 spaCy 实际能够使用的设置要广泛得多(训练中的 -gpu 标志就是其中之一)。

Transformer 使用注意力来生成上下文嵌入,因此不存在单词的单个嵌入的真正概念。这些上下文嵌入通常比词嵌入更好。因此,spaCy Transformers 模型不包含词嵌入。变形金刚的缺点是它们需要非常强大的硬件(包括 GPU)才能运行。如果您确实拥有强大的 GPU,那么使用 Transformer 通常是有意义的。

CPU 管道使用的模型不需要专门的硬件,并且通常运行速度要快得多,同时仍然为许多应用程序提供足够的准确性。如果您没有 GPU,它们基本上也是您唯一的选择。如果您确实有 GPU,则可以使用它来训练非 Transformers 管道,并且它可能会提供加速,但好处通常并不显着。因此,spaCy 支持在 GPU 上训练非 Transformers 模型,但如果您有 GPU,通常最好使用 Transformers。