使用拓扑排序对有向非循环依赖图中的并发处理进行分组任务

Joh*_*ebo 2 java algorithm graph jgrapht

我的任务类在执行之前依赖于其他任务。我想对可以并行的任务进行分组并对它们进行排序。我决定首先可以将其表示为 DAG 并尝试使用 JGrapht。首先,我遍历任务的输入列表以获取所有任务及其依赖项并将它们收集在一个列表中。然后,对于每个任务,我在图中创建一个顶点。

DirectedAcyclicGraph<Task, DefaultEdge> d = new DirectedAcyclicGraph<>(DefaultEdge.class);
Set<Task> all = collectAllTasks(tasks);
all.forEach(d::addVertex);
Run Code Online (Sandbox Code Playgroud)

然后使用相同的列表我尝试在节点之间创建边缘。

all.forEach(task -> {
        Set<TaskName> predecessors = task.getPredecessors();

        predecessors.forEach(name -> {
            Task predecessor = taskService.getTaskByName(name);
            d.addEdge(predecessor, task);
        });

    });
Run Code Online (Sandbox Code Playgroud)

然后我尝试对任务进行分组

private Set<Set<TaskId>> groupTasks(DirectedAcyclicGraph<TaskId, DefaultEdge> dag) {
    Set<Set<TaskId>> groups = new LinkedHashSet<>();
    Iterator<TaskId> iterator = new TopologicalOrderIterator<>(dag);

    iterator.forEachRemaining(taskId -> {
        //source?
        if (dag.incomingEdgesOf(taskId).isEmpty()) {
            if (groups.isEmpty()) {
                Set<TaskId> set = new HashSet<>();
                set.add(taskId);
                groups.add(set);
            } else {
                groups.iterator().next().add(taskId);
            }
        }

        Set<TaskId> tasks = new HashSet<>(Graphs.successorListOf(dag, taskId));

        //sink?
        if (tasks.isEmpty()) {
            return;
        }

        groups.add(featuresGroup);
    });

    return groups;
}
Run Code Online (Sandbox Code Playgroud)

因此,结果是有序且分组的任务,例如图形

在此输入图像描述

结果将是A, B, {C, D}, E.

然而,它完全打破了这个例子B的前身E

在此输入图像描述

我怎样才能A, B, {C, D}, E像以前一样实现图的顺序?我可以查看任何特定的算法吗?或者我如何以更好的方式实现这一目标?谢谢。

Jor*_*ble 5

可以使用以下过程获得解决方案:

  1. 第一组包含没有传入弧的所有任务:这些任务没有传入依赖性。
  2. 从图表中删除第一组中的所有任务
  3. 第二组由修改后的图中没有传入弧的任务组成:这些任务的所有依赖关系都已得到满足。
  4. 从修改后的图中删除第二组中的所有任务。继续此过程,直到所有任务都被删除。

使用 JGraphT:

public static List<List<String>> getGroups(Graph<String, DefaultEdge> taskGraph){
    List<List<String>> groups = new ArrayList<>();
    //The first group contains all vertices without incoming arcs
    List<String> group = new LinkedList<>();
    for(String task : taskGraph.vertexSet())
        if(taskGraph.inDegreeOf(task) == 0)
            group.add(task);
    //Next we construct all remaining groups. The group k+1 consists of al vertices without incoming arcs if we were
    //to remove all vertices in the previous group k from the graph.
    do {
        groups.add(group);
        List<String> nextGroup = new LinkedList<>();
        for (String task : group) {
            for (String nextTask : Graphs.neighborSetOf(taskGraph, task)) {
                if (taskGraph.inDegreeOf(nextTask) == 1)
                    nextGroup.add(nextTask);
            }
            taskGraph.removeVertex(task); //Removes a vertex and all its edges from the graph
        }
        group=nextGroup;
    }while(!group.isEmpty());
    return groups;
}
public static Graph<String, DefaultEdge> getGraph1(){
    Graph<String, DefaultEdge> taskGraph=new SimpleDirectedGraph<>(DefaultEdge.class);
    Graphs.addAllVertices(taskGraph, Arrays.asList("A","B","C","D","E"));
    taskGraph.addEdge("A","B");
    taskGraph.addEdge("B","C");
    taskGraph.addEdge("B","D");
    taskGraph.addEdge("C","E");
    taskGraph.addEdge("D","E");
    return taskGraph;
}
public static Graph<String, DefaultEdge> getGraph2(){
    Graph<String, DefaultEdge> taskGraph=new SimpleDirectedGraph<>(DefaultEdge.class);
    Graphs.addAllVertices(taskGraph, Arrays.asList("A","B","C","D","E"));
    taskGraph.addEdge("A","B");
    taskGraph.addEdge("B","C");
    taskGraph.addEdge("B","D");
    taskGraph.addEdge("B","E");
    taskGraph.addEdge("C","E");
    taskGraph.addEdge("D","E");
    return taskGraph;
}
public static void main(String[] args){
    System.out.println("Graph1: "+getGroups(getGraph1()));
    System.out.println("Graph2: "+getGroups(getGraph2()));
}
Run Code Online (Sandbox Code Playgroud)

输出:

Graph1: [[A], [B], [C, D], [E]]
Graph2: [[A], [B], [C, D], [E]]
Run Code Online (Sandbox Code Playgroud)

注意:上面的代码假设输入图确实是一个有效的任务图。您可以构建额外的检查来识别循环依赖关系,例如,如果您有一个类似的序列:A -> B -> A。