use*_*364 7 python algorithm optimization dictionary list
def removeDuplicatesFromList(seq):
# Not order preserving
keys = {}
for e in seq:
keys[e] = 1
return keys.keys()
def countWordDistances(li):
'''
If li = ['that','sank','into','the','ocean']
This function would return: { that:1, sank:2, into:3, the:4, ocean:5 }
However, if there is a duplicate term, take the average of their positions
'''
wordmap = {}
unique_words = removeDuplicatesFromList(li)
for w in unique_words:
distances = [i+1 for i,x in enumerate(li) if x == w]
wordmap[w] = float(sum(distances)) / float(len(distances)) #take average
return wordmap
Run Code Online (Sandbox Code Playgroud)
如何更快地完成此功能?
Ned*_*der 15
import collections
def countWordDistances(li):
wordmap = collections.defaultdict(list)
for i, w in enumerate(li, 1):
wordmap[w].append(i)
for k, v in wordmap.iteritems():
wordmap[k] = sum(v)/float(len(v))
return wordmap
Run Code Online (Sandbox Code Playgroud)
这使得只有一个通过列表,并将操作保持在最低限度.我在一个包含1.1M条目,29k个独特单词的单词列表上计时,它几乎是Patrick的答案的两倍.在10k字的列表中,2k是唯一的,它比OP的代码快300倍.
为了使Python代码更快,需要记住两个规则:使用最佳算法,并避免使用Python.
在算法前端,迭代列表一次而不是N + 1次(N =唯一字的数量)是加速这一点的主要因素.
在"避免Python"方面,我的意思是:你希望你的代码尽可能在C中执行.所以使用defaultdict比明确检查密钥是否存在的字典更好. defaultdict这会检查你,但在C实现中,它在Python实现中. enumerate更好for i in range(len(li)),因为它的Python步骤更少.并且enumerate(li, 1)使计从1开始,而不必在环路中一个Python +1地方.
编辑:第三条规则:使用PyPy.我的代码在PyPy上的速度是2.7的两倍.
基于@Ned Batchelder的解决方案,但没有创建虚拟列表:
import collections
def countWordDistances(li):
wordmap = collections.defaultdict(lambda:[0.0, 0.0])
for i, w in enumerate(li, 1):
wordmap[w][0] += i
wordmap[w][1] += 1.0
for k, (t, n) in wordmap.iteritems():
wordmap[k] = t / n
return wordmap
Run Code Online (Sandbox Code Playgroud)
使用一套:
def countWordDistances(li):
'''
If li = ['that','sank','into','the','ocean']
This function would return: { that:1, sank:2, into:3, the:4, ocean:5 }
However, if there is a duplicate term, take the average of their positions
'''
wordmap = {}
unique_words = set(li)
for w in unique_words:
distances = [i+1 for i,x in enumerate(li) if x == w]
wordmap[w] = float(sum(distances)) / float(len(distances)) #take average
return wordmap
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
698 次 |
| 最近记录: |