lum*_*umi 3 python arrays null apache-spark pyspark
我有这个 PySpark df:
+---------+----+----+----+----+----+----+----+----+----+
|partition| 1| 2| 3| 4| 5| 6| 7| 8| 9|
+---------+----+----+----+----+----+----+----+----+----+
| 7|null|null|null|null|null|null| 0.7|null|null|
| 1| 0.2| 0.1| 0.3|null|null|null|null|null|null|
| 8|null|null|null|null|null|null|null| 0.8|null|
| 4|null|null|null| 0.4| 0.5| 0.6|null|null| 0.9|
+---------+----+----+----+----+----+----+----+----+----+
Run Code Online (Sandbox Code Playgroud)
我将其中的 9 列组合起来:
+---------+--------------------+
|partition| vec_comb|
+---------+--------------------+
| 7| [,,,,,,,, 0.7]|
| 1|[,,,,,, 0.1, 0.2,...|
| 8| [,,,,,,,, 0.8]|
| 4|[,,,,, 0.4, 0.5, ...|
+---------+--------------------+
Run Code Online (Sandbox Code Playgroud)
如何NullTypes从列数组中删除vec_comb?
预期输出:
+---------+--------------------+
|partition| vec_comb|
+---------+--------------------+
| 7| [0.7]|
| 1| [0.1, 0.2,0.3]|
| 8| [0.8]|
| 4|[0.4, 0.5, 0.6, 0,9]|
+---------+--------------------+
Run Code Online (Sandbox Code Playgroud)
我已经尝试过(显然是错误的,但我无法理解这一点):
def clean_vec(array):
new_Array = []
for element in array:
if type(element) == FloatType():
new_Array.append(element)
return new_Array
udf_clean_vec = F.udf(f=(lambda c: clean_vec(c)), returnType=ArrayType(FloatType()))
df = df.withColumn('vec_comb_cleaned', udf_clean_vec('vec_comb'))
Run Code Online (Sandbox Code Playgroud)
您可以使用高阶函数filter删除空元素:
import pyspark.sql.functions as F
df2 = df.withColumn('vec_comb_cleaned', F.expr('filter(vec_comb, x -> x is not null)'))
df2.show()
+---------+--------------------+--------------------+
|partition| vec_comb| vec_comb_cleaned|
+---------+--------------------+--------------------+
| 7| [,,,,,, 0.7,,]| [0.7]|
| 1|[0.2, 0.1, 0.3,,,...| [0.2, 0.1, 0.3]|
| 8| [,,,,,,, 0.8,]| [0.8]|
| 4|[,,, 0.4, 0.5, 0....|[0.4, 0.5, 0.6, 0.9]|
+---------+--------------------+--------------------+
Run Code Online (Sandbox Code Playgroud)
您可以使用UDF,但会比较慢,例如
udf_clean_vec = F.udf(lambda x: [i for i in x if i is not None], 'array<float>')
df2 = df.withColumn('vec_comb_cleaned', udf_clean_vec('vec_comb'))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3380 次 |
| 最近记录: |