使用 PyTorch 手动分配权重

Aru*_*run 6 python neural-network pytorch

我使用 Python 3.8 和 PyTorch 1.7 手动分配和更改神经网络的权重和偏差。作为示例,我定义了一个 LeNet-300-100 全连接神经网络来在 MNIST 数据集上进行训练。类定义的代码为:

class LeNet300(nn.Module):
    def __init__(self):
        super(LeNet300, self).__init__()
        
        # Define layers-
        self.fc1 = nn.Linear(in_features = input_size, out_features = 300)
        self.fc2 = nn.Linear(in_features = 300, out_features = 100)
        self.output = nn.Linear(in_features = 100, out_features = 10)
        
        self.weights_initialization()
    
    
    def forward(self, x):
        out = F.relu(self.fc1(x))
        out = F.relu(self.fc2(out))
        return self.output(out)
    
    
    def weights_initialization(self):
        '''
        When we define all the modules such as the layers in '__init__()'
        method above, these are all stored in 'self.modules()'.
        We go through each module one by one. This is the entire network,
        basically.
        '''
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_normal_(m.weight)
                nn.init.constant_(m.bias, 0)
Run Code Online (Sandbox Code Playgroud)

尝试改变该模型的权重 -

# Instantiate model-
mask_model = LeNet300()
Run Code Online (Sandbox Code Playgroud)

要将每一层中的所有权重分配给一 (1),我使用代码-

with torch.no_grad():
    for layer in mask_model.state_dict():
        mask_model.state_dict()[layer] = nn.parameter.Parameter(torch.ones_like(mask_model.state_dict()[layer]))

# Sanity check-
mask_model.state_dict()['fc1.weight']
Run Code Online (Sandbox Code Playgroud)

此输出表明权重不等于 1。

我也尝试过代码-

for param in mask_model.parameters():
    # print(param.shape)
    param = nn.parameter.Parameter(torch.ones_like(param))
Run Code Online (Sandbox Code Playgroud)

但这也行不通。

帮助?

小智 8

for param in mask_model.parameters():
    param.data = nn.parameter.Parameter(torch.ones_like(param))
Run Code Online (Sandbox Code Playgroud)