Lin*_*ama 4 python deep-learning pytorch
我是 pytorch 和深度学习的新手
我的数据集 53502 x 58,
我的代码有问题
model = nn.Sequential(
nn.Linear(58,64),
nn.ReLU(),
nn.Linear(64,32),
nn.ReLU(),
nn.Linear(32,16),
nn.ReLU(),
nn.Linear(16,2),
nn.LogSoftmax(1)
)
criterion = nn.NLLLoss()
optimizer = optim.AdamW(model.parameters(), lr = 0.0001)
Run Code Online (Sandbox Code Playgroud)
epoch = 500
train_cost, test_cost = [], []
for i in range(epoch):
model.train()
cost = 0
for feature, target in trainloader:
output = model(feature) #feedforward
loss = criterion(output, target) #loss
loss.backward() #backprop
optimizer.step() #update weight
optimizer.zero_grad() #zero grad
cost += loss.item() * feature.shape[0]
train_cost.append(cost / len(train_set))
with torch.no_grad():
model.eval()
cost = 0
for feature, target in testloader:
output = model(feature) #feedforward
loss = criterion(output, target) #loss
cost += loss.item() * feature.shape
test_cost.append(cost / len(test_set))
print(f'\repoch {i+1}/{epoch} | train_cost: {train_cost[-1]} | test_cost : {test_cost[-1]}', end = "")
Run Code Online (Sandbox Code Playgroud)
然后我遇到这样的问题
2262 .format(input.size(0), target.size(0)))
2263 if dim == 2:
-> 2264 ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
2265 elif dim == 4:
2266 ret = torch._C._nn.nll_loss2d(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
RuntimeError: 1D target tensor expected, multi-target not supported
Run Code Online (Sandbox Code Playgroud)
怎么了?如何解决这个问题呢?为什么会发生这种情况?
预先非常感谢您!
使用NLLLoss目标张量时必须包含标签的索引表示,而不是独热的。例如:
我想这就是你的目标:
target = [0, 0, 1, 0]
Run Code Online (Sandbox Code Playgroud)
只需将其转换为数字,即 的索引1:
[0, 0, 1, 0] -> [2]
[1, 0, 0, 0] -> [0]
[0, 0, 0, 1] -> [3]
Run Code Online (Sandbox Code Playgroud)
然后将其转换为长张量,即:
[0, 0, 1, 0] -> [2]
[1, 0, 0, 0] -> [0]
[0, 0, 0, 1] -> [3]
Run Code Online (Sandbox Code Playgroud)
这可能会令人困惑,您的输出是一个具有类长度的张量,而您的目标是一个数字,但事实就是如此。
您可以在这里亲自检查一下。
| 归档时间: |
|
| 查看次数: |
7440 次 |
| 最近记录: |