Ole*_*siy 3 python keras tensorflow loss-function imbalanced-data
我有一个包含 15 个不平衡类别的数据集,并尝试使用 keras 进行多标签分类。
我正在尝试使用微型 F-1 分数作为衡量标准。
我的型号:
# Create a VGG instance
model_vgg = tf.keras.applications.VGG19(weights = 'imagenet', pooling = 'max', include_top = False,
input_shape = (512, 512, 3))
# Freeze the layers which you don't want to train.
for layer in model_vgg.layers[:-5]:
layer.trainable = False
# Adding custom Layers
x = model_vgg.output
x = Flatten()(x)
x = Dense(1024, activation = "relu")(x)
x = Dropout(0.5)(x)
x = Dense(1024, activation = "relu")(x)
predictions = Dense(15, activation = "sigmoid")(x)
# creating the final model
model_vgg_final = Model(model_vgg.input, predictions)
# Print the summary
model_vgg_final.summary()
Run Code Online (Sandbox Code Playgroud)
对于 F1 分数,我使用此问题中的自定义指标
from keras import backend as K
def f1(y_true, y_pred):
def recall(y_true, y_pred):
"""Recall metric.
Only computes a batch-wise average of recall.
Computes the recall, a metric for multi-label classification of
how many relevant items are selected.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision(y_true, y_pred):
"""Precision metric.
Only computes a batch-wise average of precision.
Computes the precision, a metric for multi-label classification of
how many selected items are relevant.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
precision = precision(y_true, y_pred)
recall = recall(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
Run Code Online (Sandbox Code Playgroud)
我在编译模型时使用二进制交叉熵和自定义 F-1
# Compile a model
model_vgg_final.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = [f1])
Run Code Online (Sandbox Code Playgroud)
我监控 F-1 以提前停止
# Early stopping
early_stopping = EarlyStopping(monitor = 'f1', patience = 5)
# Training the model
history_vgg = model_vgg_final.fit(train_generator, steps_per_epoch = 10, epochs = 30, verbose = 1,
callbacks = [early_stopping], validation_data = valid_generator)
Run Code Online (Sandbox Code Playgroud)
如何更新此自定义函数并获取 micro F-1 作为指标?也感谢有关我的方法的提示。
scikit-learn 文档中有信息,但不确定如何将其合并到 keras 中
好问题。
您在那里提供的链接指出了如何在旧版本的 Keras 中计算指标(请耐心等待,简短的解释)。问题是,在较旧的 Keras (1.X) 中,指标是批量计算的,这当然会导致不正确的全局结果。在 Keras 2.X 中,内置指标被删除。
但是,您的问题有解决方案。
2.x:How to get other metrics in Tensorflow 2.0 (not only precision)?tensorflow-addons--> pip install tensorflow-addons。TensorFlow 插件是一个非常好的软件包,它包含了基础 TensorFlow 软件包中不提供的多种功能和特性。这里,F1Score是一个内置的指标,所以你可以直接使用它。例子:
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.00001),
loss=tf.keras.losses.BinaryCrossentropy(),
metrics=[tf.keras.metrics.BinaryAccuracy(),
tfa.metrics.F1Score(num_classes=number_of_classes,
average='micro',
threshold=0.5)])
Run Code Online (Sandbox Code Playgroud)
请注意 ' ' 参数的用法micro,它实际上代表了您想要的 micro f1-score。
| 归档时间: |
|
| 查看次数: |
2681 次 |
| 最近记录: |