KA1*_*KA1 15 io monads interpreter haskell
IO monad实际上是如何实现的?在意义上,该main函数的实际实现是什么?
我如何从另一种语言调用haskell函数(IO),在这种情况下,我是否需要维护IO自己?
是否main将IO操作(Lazily)作为引用拉出然后调用它们?或者它是解释工作,当它发现它可以调用它们的方式的行动?或者别的什么?
有不同语言的IO monad实现是否有助于深入理解主要功能中发生的事情?
编辑:
这hGetContents让我很困惑,让我不确定IO是如何真正实现的.
好吧,假设我有一个非常简单的纯Haskell解释器,不幸的是没有IO支持,并且为了好奇,我想向它添加这个IO动作(unsafeIO技巧也).很难从GHC,Hugs或其他人那里得到它.
Rot*_*sor 25
以下是如何在Java中实现IO monad的示例:
package so.io;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import static so.io.IOMonad.*;
import static so.io.ConsoleIO.*;
/**
* This is a type containing no data -- corresponds to () in Haskell.
*/
class Unit {
public final static Unit VALUE = new Unit();
}
/**
* This type represents a function from A to R
*/
interface Function<A,R> {
public R apply(A argument);
}
/**
* This type represents an action, yielding type R
*/
interface IO<R> {
/**
* Warning! May have arbitrary side-effects!
*/
R unsafePerformIO();
}
/**
* This class, internally impure, provides pure interface for action sequencing (aka Monad)
*/
class IOMonad {
static <T> IO<T> pure(final T value) {
return new IO<T>() {
@Override
public T unsafePerformIO() {
return value;
}
};
}
static <T> IO<T> join(final IO<IO<T>> action) {
return new IO<T>(){
@Override
public T unsafePerformIO() {
return action.unsafePerformIO().unsafePerformIO();
}
};
}
static <A,B> IO<B> fmap(final Function<A,B> func, final IO<A> action) {
return new IO<B>(){
@Override
public B unsafePerformIO() {
return func.apply(action.unsafePerformIO());
}
};
}
static <A,B> IO<B> bind(IO<A> action, Function<A, IO<B>> func) {
return join(fmap(func, action));
}
}
/**
* This class, internally impure, provides pure interface for interaction with stdin and stdout
*/
class ConsoleIO {
static IO<Unit> putStrLn(final String line) {
return new IO<Unit>() {
@Override
public Unit unsafePerformIO() {
System.out.println(line);
return Unit.VALUE;
}
};
};
// Java does not have first-class functions, thus this:
final static Function<String, IO<Unit>> putStrLn = new Function<String, IO<Unit>>() {
@Override
public IO<Unit> apply(String argument) {
return putStrLn(argument);
}
};
final static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
static IO<String> getLine = new IO<String>() {
@Override
public String unsafePerformIO() {
try {
return in.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
};
}
/**
* The program composed out of IO actions in a purely functional manner.
*/
class Main {
/**
* A variant of bind, which discards the bound value.
*/
static IO<Unit> bind_(final IO<Unit> a, final IO<Unit> b) {
return bind(a, new Function<Unit, IO<Unit>>(){
@Override
public IO<Unit> apply(Unit argument) {
return b;
}
});
}
/**
* The greeting action -- asks the user for his name and then prints a greeting
*/
final static IO<Unit> greet =
bind_(putStrLn("Enter your name:"),
bind(getLine, new Function<String, IO<Unit>>(){
@Override
public IO<Unit> apply(String argument) {
return putStrLn("Hello, " + argument + "!");
}
}));
/**
* A simple echo action -- reads a line, prints it back
*/
final static IO<Unit> echo = bind(getLine, putStrLn);
/**
* A function taking some action and producing the same action run repeatedly forever (modulo stack overflow :D)
*/
static IO<Unit> loop(final IO<Unit> action) {
return bind(action, new Function<Unit, IO<Unit>>(){
@Override
public IO<Unit> apply(Unit argument) {
return loop(action);
}
});
}
/**
* The action corresponding to the whole program
*/
final static IO<Unit> main = bind_(greet, bind_(putStrLn("Entering the echo loop."),loop(echo)));
}
/**
* The runtime system, doing impure stuff to actually run our program.
*/
public class RTS {
public static void main(String[] args) {
Main.main.unsafePerformIO();
}
}
Run Code Online (Sandbox Code Playgroud)
这是一个运行时系统,它实现了控制台I/O的接口,以及一个小的纯功能程序,它向用户打招呼,然后运行一个echo循环.
人们无法在Haskell中实现不安全的部分,因为Haskell是纯粹的函数式语言.它始终使用较低级别的设施实施.
使用Java 8 Lambdas,您可以从Rotsor上面的答案中获取代码,删除Function类,因为Java 8提供了一个与FunctionalInterface相同的功能,并删除匿名类cruft以实现更清晰的代码,如下所示:
package so.io;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.function.Function;
import static so.io.IOMonad.*;
import static so.io.ConsoleIO.*;
/**
* This is a type containing no data -- corresponds to () in Haskell.
*/
class Unit {
// -- Unit$
public final static Unit VALUE = new Unit();
private Unit() {
}
}
/** This type represents an action, yielding type R */
@FunctionalInterface
interface IO<R> {
/** Warning! May have arbitrary side-effects! */
R unsafePerformIO();
}
/**
* This, internally impure, provides pure interface for action sequencing (aka
* Monad)
*/
interface IOMonad {
// -- IOMonad$
static <T> IO<T> pure(final T value) {
return () -> value;
}
static <T> IO<T> join(final IO<IO<T>> action) {
return () -> action.unsafePerformIO().unsafePerformIO();
}
static <A, B> IO<B> fmap(final Function<A, B> func, final IO<A> action) {
return () -> func.apply(action.unsafePerformIO());
}
static <A, B> IO<B> bind(IO<A> action, Function<A, IO<B>> func) {
return join(fmap(func, action));
}
}
/**
* This, internally impure, provides pure interface for interaction with stdin
* and stdout
*/
interface ConsoleIO {
// -- ConsoleIO$
static IO<Unit> putStrLn(final String line) {
return () -> {
System.out.println(line);
return Unit.VALUE;
};
};
final static Function<String, IO<Unit>> putStrLn = arg -> putStrLn(arg);
final static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
static IO<String> getLine = () -> {
try {
return in.readLine();
}
catch (IOException e) {
throw new RuntimeException(e);
}
};
}
/** The program composed out of IO actions in a purely functional manner. */
interface Main {
// -- Main$
/** A variant of bind, which discards the bound value. */
static IO<Unit> bind_(final IO<Unit> a, final IO<Unit> b) {
return bind(a, arg -> b);
}
/**
* The greeting action -- asks the user for his name and then prints
* greeting
*/
final static IO<Unit> greet = bind_(putStrLn("Enter your name:"),
bind(getLine, arg -> putStrLn("Hello, " + arg + "!")));
/** A simple echo action -- reads a line, prints it back */
final static IO<Unit> echo = bind(getLine, putStrLn);
/**
* A function taking some action and producing the same action run repeatedly
* forever (modulo stack overflow :D)
*/
static IO<Unit> loop(final IO<Unit> action) {
return bind(action, arg -> loop(action));
}
/** The action corresponding to the whole program */
final static IO<Unit> main = bind_(greet, bind_(putStrLn("Entering the echo loop."), loop(echo)));
}
/** The runtime system, doing impure stuff to actually run our program. */
public interface RTS {
// -- RTS$
public static void main(String[] args) {
Main.main.unsafePerformIO();
}
}
Run Code Online (Sandbox Code Playgroud)
请注意,我还将类声明的静态方法更改为接口声明的静态方法.为什么?没有特别的原因,只是你可以在Java 8中.
IOGHC 7.10 中的实际实现。的IO,实质上是在类型的状态单子State# RealWorld(在定义的GHC.Types):
{- |
A value of type @'IO' a@ is a computation which, when performed,
does some I\/O before returning a value of type @a@.
There is really only one way to \"perform\" an I\/O action: bind it to
@Main.main@ in your program. When your program is run, the I\/O will
be performed. It isn't possible to perform I\/O from an arbitrary
function, unless that function is itself in the 'IO' monad and called
at some point, directly or indirectly, from @Main.main@.
'IO' is a monad, so 'IO' actions can be combined using either the do-notation
or the '>>' and '>>=' operations from the 'Monad' class.
-}
newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #))
Run Code Online (Sandbox Code Playgroud)
该IO单子是严格的,因为bindIO由定义case匹配(在定义的GHC.Base):
instance Monad IO where
{-# INLINE return #-}
{-# INLINE (>>) #-}
{-# INLINE (>>=) #-}
m >> k = m >>= \ _ -> k
return = returnIO
(>>=) = bindIO
fail s = failIO s
returnIO :: a -> IO a
returnIO x = IO $ \ s -> (# s, x #)
bindIO :: IO a -> (a -> IO b) -> IO b
bindIO (IO m) k = IO $ \ s -> case m s of (# new_s, a #) -> unIO (k a) new_s
Run Code Online (Sandbox Code Playgroud)
此实现在Edward Yang 的博客文章中进行了讨论。
该IO单子基本上实施为状态变压器(类似State),用专用的令牌RealWorld.每个IO操作都依赖于此令牌,并在完成时传递它.unsafeInterleaveIO引入了第二个令牌,以便可以启动新的IO操作,而另一个仍在执行其工作.
通常,您不必关心实施.如果要从其他语言调用IO函数,GHC会关心删除IO包装器.考虑一下这个小片段:
printInt :: Int -> IO ()
printInt int = do putStr "The argument is: "
print int
foreign export ccall printInt :: Int -> IO ()
Run Code Online (Sandbox Code Playgroud)
这将生成一个printInt从C 调用的符号.该函数变为:
extern void printInt(HsInt a1);
Run Code Online (Sandbox Code Playgroud)
哪里HsInt只是一个(取决于你的平台)typedefd int.所以你看,monad IO已被完全删除.