Rob*_*nox 6 spatial smoothing gam mgcv autocorrelation
我正在根据声学标签检测对河流中的鱼类深度进行建模(这意味着数据并不完全是完美间隔的连续时间序列)。我预测,深度会根据河流的空间位置而有所不同,因为不同的区域有不同的可用深度,一天中的不同时间,因为深度对光有反应,一年中的一天也有相同的原因,并且个体之间也有所不同。那么基本模型就是
深度 ~ s(lon, lat) + s(小时) + s(yday) + s(ID, bs="re")
有几百万次检测,所以模型很糟糕,所以
bam(深度 ~ s(经度、纬度) + s(小时) + s(yday) + s(ID, bs="re")
每个人的深度应该与之前的记录自相关(当然这取决于它最后一次注册的时间,但我不太知道如何解释时间上的离散间隔)。
我知道 rho 参数在 bam 中用作一种 corAR1 函数,我想这可以解释自相关。我还考虑将 lag(深度,by=ID) 作为预测变量,它的表现相当好,但我不确定这种方法的有效性。
我跟踪了几个面包屑发现 rho 可以从没有相关结构的模型中估计 rho<-acf(resid(m1),plot=FALSE)$acf 2 -
对于每个人,我添加了一个 ARSTART 变量来调用 AR.start = df$ARSTART 来考虑个体之间不同的时间序列 - 所以我的模型是
m2<-bam(depth~s(lon, lat)+s(yday)+s(hour, bs="cc")+s(fID, bs="re"), AR.start=df$ARSTART, discrete=T, rho=rho, data=df)
Run Code Online (Sandbox Code Playgroud)
一切都进展顺利,根据 AIC,具有自相关结构的模型拟合得更好(更好),但效果的后验估计非常不准确(或缩放比例很差)。与没有结构的模型相比,根据 lon、lat 平滑器的空间效应变得极端(且均匀),其中空间平滑器似乎非常有效地捕获空间方差,表明它们被预测在较深的区域中更深且在较浅的区域较浅。
如果需要,我可以提供示例代码,但问题本质上是,与模型相比,自相关结构会如此显着地改变后验估计的值是否有意义,并且时间自相关结构是否吸收了所有方差是否与空间效应相关(在具有自相关结构的模型中似乎被否定)?
一些想法-我不知道什么是最好的:
非常感谢所有帮助-非常感谢
| 归档时间: |
|
| 查看次数: |
723 次 |
| 最近记录: |