spa*_*500 4 r ggplot2 facet-wrap
我整个早上都被困在这个问题上,但无法弄清楚。
我的数据的每一行都包含:时间戳、测量值、用户。
如果我将数据作为一个整体绘制出来,效果就很好。但是,如果我尝试使用facet_wrap按日期绘制数据,它会不断失败并出现错误:Error: scale_idmust not beNA。
答案可能是完全显而易见的,但我缺乏知识和关键字来自己找到答案。
我总结了给出以下错误的最简单的示例。
非常感谢任何意见/建议。
代表:
library(tidyverse)
cols <- cols(
timestamp = col_datetime(format = ""),
tps = col_double(),
user = col_character()
)
df <- read_csv("
timestamp, tps, user
2021-01-06 07:05:44, 10, CatA
2021-01-06 09:05:44, 15, CatA
2021-01-06 10:15:44, 10, CatA
2021-01-06 14:05:44, 15, CatA
2021-01-06 07:03:44, 11, CatB
2021-01-06 09:01:44, 13, CatB
2021-01-06 10:12:44, 2, CatB
2021-01-06 16:05:44, 6, CatB
2021-01-07 07:05:44, 2, CatA
2021-01-07 09:05:44, 3, CatA
2021-01-07 10:15:44, 6, CatA
2021-01-07 14:05:44, 7, CatA
2021-01-07 07:03:44, 9, CatB
2021-01-07 09:01:44, 6, CatB
2021-01-07 10:12:44, 4, CatB
2021-01-07 16:05:44, 1, CatB
", col_types = cols)
str(df)
# tibble [16 x 4] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
# $ timestamp: POSIXct[1:16], format: "2021-01-06 07:05:44" "2021-01-06 09:05:44" "2021-01-06 10:15:44" "2021-01-06 14:05:44" ...
# $ tps : num [1:16] 10 15 10 15 11 13 2 6 2 3 ...
# $ user : chr [1:16] "CatA" "CatA" "CatA" "CatA" ...
# - attr(*, "spec")=
# .. cols(
# .. timestamp = col_datetime(format = ""),
# .. tps = col_double(),
# .. user = col_character()
# .. )
#I then create a date variable:
df <- df %>%
mutate(date = floor_date(
timestamp,
unit = "days",
week_start = getOption("lubridate.week.start", 7))
)
# This is where it fails:
ggplot(data=df, aes(x=timestamp, y=tps, color=user)) +
geom_line() +
scale_x_datetime() +
facet_wrap( ~ date)
##########
# RESULT #
##########
#> ggplot(data=df, aes(x=timestamp, y=tps, color=user)) +
#+ geom_line() +
#+ scale_x_datetime() +
#+ facet_wrap( ~ date)
#Error: `scale_id` must not be `NA`
Run Code Online (Sandbox Code Playgroud)
将列更改date为日期类。
library(ggplot2)
ggplot(data=df, aes(x=timestamp, y=tps, color=user)) +
geom_line() +
scale_x_datetime() +
facet_wrap( ~ as.Date(date), scales = 'free')
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3538 次 |
| 最近记录: |