pandas 在组内排序然后聚合

Tra*_*vis 4 python sorting group-by dataframe pandas

我正在做搜索引擎的查询分析。用户可以在一个会话的不同时间在谷歌搜索引擎上一一搜索不同的查询。

我有多个字段的数据:session_idlog_timequeryfeature_i等。我想分组session_id,然后按 的concat顺序将几行合并为一行。这样输出数据将以时间序列的方式表示用户的行为。log_time

数据集

代码:

toy_data = pd.DataFrame({'session_id':[1,2,1,2,3,3,],
             'log_time':[4,5,6,1,2,3],
             'query':['hi','dude','pandas','groupby','sort','agg'],
             'cate_feat_0':['apple','banana']*3,
             'num_feat_0':[1,2,3,4,5,6]})
print(toy_data)
Run Code Online (Sandbox Code Playgroud)

输出:

       session_id  log_time query cate_feat_0  num_feat_0
0           1         4       hi       apple           1
1           2         5     dude      banana           2
2           1         6   pandas       apple           3
3           2         1  groupby      banana           4
4           3         2     sort       apple           5
5           3         3      agg      banana           6
Run Code Online (Sandbox Code Playgroud)

我想要的是:

## note that all list are sorted by log time with each session_id group
session_id    query_list    log_time_list cate_feat_0_list    num_feat_0_list
    1         [hi, pandas]   [4,6]        [apple, apple]      [1,3]
    2         [groupby, dude] [1,5]       [banana, banana]    [4,2]  
    3         [sort,agg]      [2,3]       [apple, banana]     [5,6]
Run Code Online (Sandbox Code Playgroud)

我的尝试

首先我们使用代码进行 groupby 和 agg:

toy_data_res = toy_data.groupby('session_id').agg({'query':list, 'log_time':list, 'cate_feat_0':list, 'num_feat_0':list})
toy_data_res
Run Code Online (Sandbox Code Playgroud)

给出:

                      query log_time       cate_feat_0 num_feat_0
session_id                                                       
1              [hi, pandas]   [4, 6]    [apple, apple]     [1, 3]
2           [dude, groupby]   [5, 1]  [banana, banana]     [2, 4]
3               [sort, agg]   [2, 3]   [apple, banana]     [5, 6]
Run Code Online (Sandbox Code Playgroud)

然后我们在每个会话中使用代码进行排序:

for i in toy_data_res.index:
    sort_index = np.argsort(toy_data_res.loc[i,'log_time']) ##  get time order with in group
    for col in toy_data_res.columns.values:
        toy_data_res.loc[i,col] = [toy_data_res.loc[i,col][j] for j in sort_index] ## sort values in cols 
toy_data_res
Run Code Online (Sandbox Code Playgroud)

给出:

                      query log_time       cate_feat_0 num_feat_0
session_id                                                       
1              [hi, pandas]   [4, 6]    [apple, apple]     [1, 3]
2           [groupby, dude]   [1, 5]  [banana, banana]     [4, 2]
3               [sort, agg]   [2, 3]   [apple, banana]     [5, 6]
Run Code Online (Sandbox Code Playgroud)

我的方法是快慢。有没有更好的办法groupby -> sort with in group -> aggregation呢?

Tips: 我们可以在SQL中使用STRING_AGGorGROUP_CONCAT来进行组内排序。

jez*_*ael 6

使用DataFrame.sort_valuesbefore groupby,如果需要应用相同的功能,可以使用列名称列表:

df = (toy_data.sort_values(['session_id','log_time'])
              .groupby('session_id')[['query','log_time','cate_feat_0', 'num_feat_0']]
              .agg(list))

    
print (df)
                      query log_time       cate_feat_0 num_feat_0
session_id                                                       
1              [hi, pandas]   [4, 6]    [apple, apple]     [1, 3]
2           [groupby, dude]   [1, 5]  [banana, banana]     [4, 2]
3               [sort, agg]   [2, 3]   [apple, banana]     [5, 6]
Run Code Online (Sandbox Code Playgroud)